Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1

被引:134
作者
Jacoby, T [1 ]
Flanagan, H [1 ]
Faykin, A [1 ]
Seto, AG [1 ]
Mattison, C [1 ]
Ota, I [1 ]
机构
[1] UNIV COLORADO,DEPT CHEM & BIOCHEM,BOULDER,CO 80309
关键词
D O I
10.1074/jbc.272.28.17749
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein phosphatases inactivate mitogen-activated protein kinase (MAPK) signaling pathways by dephosphorylating components of the MAPK cascade. Two genes encoding protein-tyrosine phosphatases, PTP2, and a new phosphatase, PTP3, have been isolated in a genetic selection for negative regulators of an osmotic stress response pathway called HOG, for high osmolarity glycerol, in budding yeast. PTP2 and PTP3 were isolated as multicopy suppressors of a severe growth defect due to hyperactivation of the HOG: pathway. Phosphatase activity is required for suppression since mutation of the catalytic Cys residue in Ptp2 and Ptp3, destroys suppressor function and biochemical activity. The substrate of these phosphatases is likely to be the MAPK, Hog1. Catalytically inactive Ptp2 and Ptp3 coprecipitate with Hog1 from yeast extracts. In addition, strains lacking PTP2 and PTP3 do not dephosphorylate Hog1-phosphotyrosine as well as wild type. The latter suggests that PTP2 and PTP3 play a role in adaptation. Consistent with this role, osmotic stress induces expression of PTP2 and PTP3 transcripts in a Hog1-dependent manner. Thus Ptp2 and Ptp3 likely act in a negative feedback loop to inactivate Hog1.
引用
收藏
页码:17749 / 17755
页数:7
相关论文
共 52 条
[1]   GPD1, WHICH ENCODES GLYCEROL-3-PHOSPHATE DEHYDROGENASE, IS ESSENTIAL FOR GROWTH UNDER OSMOTIC-STRESS IN SACCHAROMYCES-CEREVISIAE, AND ITS EXPRESSION IS REGULATED BY THE HIGH-OSMOLARITY GLYCEROL RESPONSE PATHWAY [J].
ALBERTYN, J ;
HOHMANN, S ;
THEVELEIN, JM ;
PRIOR, BA .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :4135-4144
[2]   INACTIVATION OF P42 MAP KINASE BY PROTEIN PHOSPHATASE 2A AND A PROTEIN-TYROSINE-PHOSPHATASE, BUT NOT CL100, IN VARIOUS CELL-LINES [J].
ALESSI, DR ;
GOMEZ, N ;
MOORHEAD, C ;
LEWIS, T ;
KEYSE, SM ;
COHEN, P .
CURRENT BIOLOGY, 1995, 5 (03) :283-295
[3]   REQUIREMENT FOR INTEGRATION OF SIGNALS FROM 2 DISTINCT PHOSPHORYLATION PATHWAYS FOR ACTIVATION OF MAP KINASE [J].
ANDERSON, NG ;
MALLER, JL ;
TONKS, NK ;
STURGILL, TW .
NATURE, 1990, 343 (6259) :651-653
[4]  
Ausubel FA, 1995, CURRENT PROTOCOLS MO
[5]   THE RECOGNITION COMPONENT OF THE N-END RULE PATHWAY [J].
BARTEL, B ;
WUNNING, I ;
VARSHAVSKY, A .
EMBO JOURNAL, 1990, 9 (10) :3179-3189
[6]   AN OSMOSENSING SIGNAL TRANSDUCTION PATHWAY IN YEAST [J].
BREWSTER, JL ;
DEVALOIR, T ;
DWYER, ND ;
WINTER, E ;
GUSTIN, MC .
SCIENCE, 1993, 259 (5102) :1760-1763
[7]   The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation [J].
Chu, YF ;
Solski, PA ;
KhosraviFar, R ;
Der, CJ ;
Kelly, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (11) :6497-6501
[8]   HOW MAP KINASES ARE REGULATED [J].
COBB, MH ;
GOLDSMITH, EJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (25) :14843-14846
[9]  
Degols G, 1996, MOL CELL BIOL, V16, P2870
[10]   AN EFFICIENT TRANSFORMATION PROCEDURE ENABLING LONG-TERM STORAGE OF COMPETENT CELLS OF VARIOUS YEAST GENERA [J].
DOHMEN, RJ ;
STRASSER, AWM ;
HONER, CB ;
HOLLENBERG, CP .
YEAST, 1991, 7 (07) :691-692