Different effects of BMP-2 on marrow stromal cells from human and rat bone

被引:131
作者
Osyczka, AM [1 ]
Diefenderfer, DL [1 ]
Bhargave, G [1 ]
Leboy, PS [1 ]
机构
[1] Univ Penn, Sch Dent Med, Dept Biochem, Philadelphia, PA 19104 USA
关键词
osteogenesis; bone morphogenetic proteins; transcription factors; alkaline phosphatase; mesenchymal stem cells; marrow stromal cells;
D O I
10.1159/000075032
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Bone morphogenetic proteins (BMPs) promote the differentiation of osteoprogenitor cells, and also induce osteogenesis in bone marrow stromal cells ( MSC) from rats and mice. However, compared to results with animal models, BMPs are relatively inefficient in inducing human MSC to undergo osteogenesis, and are much less effective in promoting bone formation in human clinical trials. Previous studies indicated that, while human MSC respond to dexamethasone with elevated levels of the osteoblast marker alkaline phosphatase, most isolates of human MSC fail to show alkaline phosphatase induction in response to BMP-2, BMP-4, or BMP-7. Several other genes known to be induced by BMPs are appropriately regulated; thus, human MSC are capable of some BMP-activated signaling. Analysis of the BMP receptors ALK-3 and ALK-6 indicated that, although ALK-6 mRNA was not expressed in human MSC, overexpressing a constitutively active ALK-6 receptor did not induce elevated alkaline phosphatase. Real-time RT-PCR was used to investigate expression of several osteoblast-related transcription factors in MSC after 6 days' exposure to BMP2 or dexamethasone. Msx-2, a transcription factor that has been reported to inhibit differentiation of osteoprogenitor cells, showed 10-fold elevation in BMP-2-treated human MSC, but not in BMP-2-treated rat MSC. Overexpression of Msx-2 in human and rat MSC, however, did not alter alkaline phosphatase levels, which suggests that absence of BMP-stimulated alkaline phosphatase was not caused by the BMP-2-induced increase in Msx-2. Although Runx2 isoforms have been implicated in control of osteoblast differentiation, levels of this transcription factor were unaffected by BMP treatment. Expression of the FKHR transcription factor, which has been reported to regulate alkaline phosphatase transcription in mouse cells, showed a modest increase in response to BMP-2, but a much greater increase in dexamethasone-treated cells. We propose that BMP regulation of the bone/liver/kidney alkaline phosphatase gene is indirect, requiring expression of new transcription factor(s) that behave differently in rodent and human MSC. Copyright (C) 2004 S. Karger AG, Basel.
引用
收藏
页码:109 / 119
页数:11
相关论文
共 83 条
[1]   Essential requirement of BMPs-2/4 for both osteoblast and osteoclast formation in murine bone marrow cultures from adult mice: Antagonism by noggin [J].
Abe, E ;
Yamamoto, M ;
Taguchi, Y ;
Lecka-Czernik, B ;
O'Brien, CA ;
Economides, AN ;
Stahl, N ;
Jilka, RL ;
Manolagas, SC .
JOURNAL OF BONE AND MINERAL RESEARCH, 2000, 15 (04) :663-673
[2]   TGF-β-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation [J].
Alliston, T ;
Choy, L ;
Ducy, P ;
Karsenty, G ;
Derynck, R .
EMBO JOURNAL, 2001, 20 (09) :2254-2272
[3]  
Aubin JE, 1998, J CELL BIOCHEM, P73, DOI 10.1002/(SICI)1097-4644(1998)72:30/31+<73::AID-JCB11>3.0.CO
[4]  
2-L
[5]   Effect of rhBMP-2 on the osteogenic potential of bone marrow stromal cells from an osteogenesis imperfecta mouse (oim) [J].
Balk, ML ;
Bray, J ;
Day, C ;
Epperly, M ;
Greenberger, J ;
Evans, CH ;
Niyibizi, C .
BONE, 1997, 21 (01) :7-15
[6]   Differential regulation of the two principal Runx2/Cbfa1 N-terminal isoforms in response to bone morphogenetic protein-2 during development of the osteoblast phenotype [J].
Banerjee, C ;
Javed, A ;
Choi, JY ;
Green, J ;
Rosen, V ;
van Wijnen, AJ ;
Stein, JL ;
Lian, JB ;
Stein, GS .
ENDOCRINOLOGY, 2001, 142 (09) :4026-4039
[7]   FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts [J].
Bois, PRJ ;
Grosveld, GC .
EMBO JOURNAL, 2003, 22 (05) :1147-1157
[8]   BMP receptors in limb and tooth formation [J].
Cheifetz, S .
CRITICAL REVIEWS IN ORAL BIOLOGY & MEDICINE, 1999, 10 (02) :182-198
[9]   In vitro and in vivo induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene [J].
Cheng, SL ;
Lou, J ;
Wright, NM ;
Lai, CF ;
Avioli, LV ;
Riew, KD .
CALCIFIED TISSUE INTERNATIONAL, 2001, 68 (02) :87-94
[10]   THE EFFECT OF RECOMBINANT HUMAN OSTEOGENIC PROTEIN-1 ON HEALING OF LARGE SEGMENTAL BONE DEFECTS [J].
COOK, SD ;
BAFFES, GC ;
WOLFE, MW ;
SAMPATH, TK ;
RUEGER, DC ;
WHITECLOUD, TS .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1994, 76A (06) :827-838