The rpoS-encoded sigma(S) subunit of RNA polymerase in Escherichia coli is a global regulatory factor involved in several stress responses. Mainly because of increased rpoS translation and stabilization of sigma(S), which in nonstressed cells is a highly unstable protein, the cellular sigma(S) content increases during entry into stationary phase and in response to hyperosmolarity. Here, we identify the hfq-encoded RNA-binding protein HF-I, which has been known previously only as a host factor for the replication of phage Q beta RNA, as an essential factor for rpoS translation. An hfq null mutant exhibits strongly reduced sigma(S) levels under all conditions tested and is deficient for growth phase-related and osmotic induction of sigma(S). Using a combination of gene fusion analysis and pulse-chase experiments, we demonstrate that the hfq mutant is specifically impaired in rpoS translation. We also present evidence that the H-NS protein, which has been shown to affect rpoS translation, acts in the same regulatory pathway as HF-I at a position upstream of HF-I or in conjunction with HF-I. In addition, we show that expression and heat induction of the heat shock sigma factor sigma 32 (encoded by rpoH) is not dependent on HF-I, although rpoH and rpoS are both subject to translational regulation probably mediated by changes in mRNA secondary structure. HF-I is the first factor known to be specifically involved in rpoS translation, and this role is the first cellular function to be identified for this abundant ribosome-associated RNA-binding protein in E. coli.