On the maximum size of proteins to stay and fold in the cavity of GroEL underneath GroES

被引:94
作者
Sakikawa, C [1 ]
Taguchi, H [1 ]
Makino, Y [1 ]
Yoshida, M [1 ]
机构
[1] Tokyo Inst Technol, Resources Utilizat Res Lab, Yokohama, Kanagawa 2268503, Japan
关键词
D O I
10.1074/jbc.274.30.21251
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
GroEL encapsulates non-native protein in a folding cage underneath GroES (cis-cavity). Here we report the maximum size of the non-native protein to stay and fold in the cis-cavity, Using total soluble proteins of Escherichia coli in denatured state as binding substrates and protease resistance as the measure of polypeptide held in the cis-cavity, it was estimated that the cis-cavity can accommodate up to similar to 57-kDa non-native proteins. To know if a protein with nearly the maximum size can complete folding in the cis-cavity, we made a 54-kDa protein in which green fluorescent protein (GFP) and its blue fluorescent variant were fused tandem. This fusion protein was captured in the cis-cavity, and folding occurred there. Fluorescence resonance energy transfer proved that both GFP and blue fluorescent protein moieties of the same fused protein were able to fold into native structures in the cis-cavity, Consistently, simulated packing of crystal structures shows that two native GFPs just fit in the cis-cavity, A fusion protein of three GFPs (82 kDa) was also attempted, but, as expected, it was not captured in the cis-cavity.
引用
收藏
页码:21251 / 21256
页数:6
相关论文
共 36 条
[1]  
BOCHKAREVA ES, 1992, J BIOL CHEM, V267, P6796
[2]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[3]   THE CRYSTAL-STRUCTURE OF THE BACTERIAL CHAPERONIN GROEL AT 2.8-ANGSTROM [J].
BRAIG, K ;
OTWINOWSKI, Z ;
HEGDE, R ;
BOISVERT, DC ;
JOACHIMIAK, A ;
HORWICH, AL ;
SIGLER, PB .
NATURE, 1994, 371 (6498) :578-586
[4]   The Hsp70 and Hsp60 chaperone machines [J].
Bukau, B ;
Horwich, AL .
CELL, 1998, 92 (03) :351-366
[5]   GREEN FLUORESCENT PROTEIN AS A MARKER FOR GENE-EXPRESSION [J].
CHALFIE, M ;
TU, Y ;
EUSKIRCHEN, G ;
WARD, WW ;
PRASHER, DC .
SCIENCE, 1994, 263 (5148) :802-805
[6]   LOCATION OF A FOLDING PROTEIN AND SHAPE CHANGES IN GROEL-GROES COMPLEXES IMAGED BY CRYOELECTRON MICROSCOPY [J].
CHEN, S ;
ROSEMAN, AM ;
HUNTER, AS ;
WOOD, SP ;
BURSTON, SG ;
RANSON, NA ;
CLARKE, AR ;
SAIBIL, HR .
NATURE, 1994, 371 (6494) :261-264
[7]   Improved green fluorescent protein by molecular evolution using DNA shuffling [J].
Crameri, A ;
Whitehorn, EA ;
Tate, E ;
Stemmer, WPC .
NATURE BIOTECHNOLOGY, 1996, 14 (03) :315-319
[8]   Identification of in vivo substrates of the yeast mitochondrial chaperonins reveals overlapping but non-identical requirement for hsp60 and hsp10 [J].
Dubaquie, Y ;
Looser, R ;
Fünfschilling, U ;
Jenö, P ;
Rospert, S .
EMBO JOURNAL, 1998, 17 (20) :5868-5876
[9]   In vivo observation of polypeptide flux through the bacterial chaperonin system [J].
Ewalt, KL ;
Hendrick, JP ;
Houry, WA ;
Hartl, FU .
CELL, 1997, 90 (03) :491-500
[10]  
Fenton WA, 1997, PROTEIN SCI, V6, P743