Newtonian hydrodynamics of the coalescence of black holes with neutron stars - IV. Irrotational binaries with a soft equation of state

被引:49
作者
Lee, WH [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico
关键词
gravitational waves; hydrodynamics; binaries : close; stars : neutron; gamma-rays : bursts;
D O I
10.1046/j.1365-8711.2001.04898.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the results of three-dimensional hydrodynamical simulations of the final stages of in-spiral in a black hole-neutron star binary, when the separation is comparable to the stellar radius. We use a Newtonian smooth particle hydrodynamics (SPH) code to model the evolution of the system, and take the neutron star to be a polytrope with a soft (adiabatic indices Gamma = 2 and Gamma = 5/3) equation of state and the black hole to be a Newtonian point mass. The only non-Newtonian effect we include is a gravitational radiation back reaction force, computed in the quadrupole approximation for point masses. We use irrotational binaries as initial conditions for our dynamical simulations, which are begun when the system is on the verge of initiating mass transfer and followed for approximately 23 ms. For all the cases studied we find that the star is disrupted on a dynamical time-scale, and forms a massive (M-disc approximate to 0.2 M.) accretion torus around the spinning (Kerr) black hole. The rotation axis is clear of baryons (less than 10(-5) M. within 10 degrees) to an extent that would not preclude the formation of a relativistic fireball capable of powering a cosmological gamma-ray burst. Some mass (the specific amount is sensitive to the stiffness of the equation of state) may be dynamically ejected from the system during the coalescence and could undergo r-process nucleosynthesis. We calculate the waveforms, luminosities and energy spectra of the gravitational radiation signal, and show how they reflect the global outcome of the coalescence process.
引用
收藏
页码:583 / 600
页数:18
相关论文
共 125 条
[1]   LIGO - THE LASER-INTERFEROMETER-GRAVITATIONAL-WAVE-OBSERVATORY [J].
ABRAMOVICI, A ;
ALTHOUSE, WE ;
DREVER, RWP ;
GURSEL, Y ;
KAWAMURA, S ;
RAAB, FJ ;
SHOEMAKER, D ;
SIEVERS, L ;
SPERO, RE ;
THORNE, KS ;
VOGT, RE ;
WEISS, R ;
WHITCOMB, SE ;
ZUCKER, ME .
SCIENCE, 1992, 256 (5055) :325-333
[2]  
Abramowicz MA, 1998, ASTRON ASTROPHYS, V331, P1143
[3]   RUNAWAY INSTABILITY IN ACCRETION DISKS ORBITING BLACK-HOLES [J].
ABRAMOWICZ, MA ;
CALVANI, M ;
NOBILI, L .
NATURE, 1983, 302 (5909) :597-599
[4]  
[Anonymous], PONTIF ACAD SCI SCR
[5]   Post-Newtonian smoothed particle hydrodynamics [J].
Ayal, S ;
Piran, T ;
Oechslin, R ;
Davies, MB ;
Rosswog, S .
ASTROPHYSICAL JOURNAL, 2001, 550 (02) :846-859
[6]   VON-NEUMANN STABILITY ANALYSIS OF SMOOTHED PARTICLE HYDRODYNAMICS - SUGGESTIONS FOR OPTIMAL-ALGORITHMS [J].
BALSARA, DS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 121 (02) :357-372
[7]   Binary neutron stars in general relativity: Quasiequilibrium models [J].
Baumgarte, TW ;
Cook, GB ;
Scheel, MA ;
Shapiro, SL ;
Teukolsky, SA .
PHYSICAL REVIEW LETTERS, 1997, 79 (07) :1182-1185
[8]  
Belczynski K, 1999, ASTRON ASTROPHYS, V346, P91
[9]   Evolution of binary compact objects that merge [J].
Bethe, HA ;
Brown, GE .
ASTROPHYSICAL JOURNAL, 1998, 506 (02) :780-789
[10]   TIDAL INTERACTIONS OF INSPIRALING COMPACT BINARIES [J].
BILDSTEN, L ;
CUTLER, C .
ASTROPHYSICAL JOURNAL, 1992, 400 (01) :175-180