Sulfonylurea and K+-channel opener sensitivity of KATP channels -: Functional coupling of Kir6.2 and SUR1 subunits

被引:85
作者
Koster, JC [1 ]
Sha, Q [1 ]
Nichols, CG [1 ]
机构
[1] Washington Univ, Sch Med, Dept Cell Biol & Physiol, St Louis, MO 63110 USA
关键词
K+ current; sulfonylurea; MgADP; diazoxide; PIP2;
D O I
10.1085/jgp.114.2.203
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The sensitivity of K-ATP channels to high-affinity block by sulfonyiureas and to stimulation by K+ channel openers and MgADP (PCOs) is conferred by the regulatory sulfonylurea receptor (SUR) subunit, whereas ATP inhibits the channel through interaction with the inward rectifier (Kir6.2) subunit. Phosphatidylinositol 4,5-bisphosphate (PIP2) profoundly antagonized ATP inhibition of K-ATP channels expressed from cloned Kir6.2+SUR1 subunits, but also abolished high affinity tolbutamide sensitivity. Br;stabilizing the open state of the channel, PIP2 drives the channel away from closed state(s) that are preferentially affected by high affinity tolbutamide binding, thereby producing an apparent loss of high affinity tolbutamide inhibition. Mutant K-ATP channels (Kir6.2[Delta N30] or Kir6.2[L164A], coexpressed with SUR1) also displayed an "uncoupled" phenotype with no high affinity tolbutamide block and with intrinsically higher open state stability. Conversely, Kir6.2[R176A]+SUR1 channels, which have an intrinsically lower open state stability, displayed a greater high affinity fraction of tolbutamide block. In addition to antagonizing high-affinity block by tolbutamide, PIP2 also altered the stimulatory action of the PCOs, diazoxide and MgADP. With time after PIP, application, PCO stimulation first increased, and then subsequently decreased, probably reflecting a common path-way for activation of the channel by stimulatory PCOs and PIP2. The net effect of increasing open state stability, either by PIP2 or mutagenesis, is an apparent "uncoupling" of the Kir6.2 subunit from the regulatory input of SUR1, an action that can be partially reversed by screening negative charges on the membrane with poly-L-lysine.
引用
收藏
页码:203 / 213
页数:11
相关论文
共 41 条
[1]   CLONING OF THE BETA-CELL HIGH-AFFINITY SULFONYLUREA RECEPTOR - A REGULATOR OF INSULIN-SECRETION [J].
AGUILARBRYAN, L ;
NICHOLS, CG ;
WECHSLER, SW ;
CLEMENT, JP ;
BOYD, AE ;
GONZALEZ, G ;
HERRERASOSA, H ;
NGUY, K ;
BRYAN, J ;
NELSON, DA .
SCIENCE, 1995, 268 (5209) :423-426
[2]   ADENOSINE 5'-TRIPHOSPHATE-SENSITIVE POTASSIUM CHANNELS [J].
ASHCROFT, FM .
ANNUAL REVIEW OF NEUROSCIENCE, 1988, 11 :97-118
[3]   PIP2 and PIP as determinants for ATP inhibition of KATP channels [J].
Baukrowitz, T ;
Schulte, U ;
Oliver, D ;
Herlitze, S ;
Krauter, T ;
Tucker, SJ ;
Ruppersberg, JP ;
Fakler, B .
SCIENCE, 1998, 282 (5391) :1141-1144
[4]  
Brady PA, 1998, CIRC RES, V82, P272
[5]   Association and stoichiometry of K-ATP channel subunits [J].
Clement, JP ;
Kunjilwar, K ;
Gonzalez, G ;
Schwanstecher, M ;
Panten, U ;
AguilarBryan, L ;
Bryan, J .
NEURON, 1997, 18 (05) :827-838
[6]   ATP-SENSITIVE K+ CHANNEL MODIFICATION BY METABOLIC INHIBITION IN ISOLATED GUINEA-PIG VENTRICULAR MYOCYTES [J].
DEUTSCH, N ;
WEISS, JN .
JOURNAL OF PHYSIOLOGY-LONDON, 1993, 465 :163-179
[7]   SURFACE-CHARGE AND PROPERTIES OF CARDIAC ATP-SENSITIVE K+ CHANNELS [J].
DEUTSCH, N ;
MATSUOKA, S ;
WEISS, JN .
JOURNAL OF GENERAL PHYSIOLOGY, 1994, 104 (04) :773-800
[8]   KATP channel inhibition by ATP requires distinct functional domains of the cytoplasmic C terminus of the pore-forming subunit [J].
Drain, P ;
Li, LH ;
Wang, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (23) :13953-13958
[9]   Anionic phospholipids activate ATP-sensitive potassium channels [J].
Fan, Z ;
Makielski, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (09) :5388-5395
[10]   ATP-SENSITIVE K-CHANNELS IN HEART-MUSCLE - SPARE CHANNELS [J].
FINDLAY, I ;
FAIVRE, JF .
FEBS LETTERS, 1991, 279 (01) :95-97