Molecular mechanisms of steroid hormone signaling in plants

被引:296
作者
Vert, G
Nemhauser, JL
Geldner, N
Hong, FX
Chory, J
机构
[1] Salk Inst Biol Studies, Plant Biol Lab, La Jolla, CA 92037 USA
[2] Salk Inst Biol Studies, Howard Hughes Med Inst, La Jolla, CA 92037 USA
关键词
Arabidopsis; brassinosteroids; receptor; signal transduction; gene expression;
D O I
10.1146/annurev.cellbio.21.090704.151241
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Brassinosteroids (BRs), the polyhydroxylated steroid hormones of plants, regulate the growth and differentiation of plants throughout their life cycle. Over the past several years, genetic and biochemical approaches have yielded great progress in understanding BR signaling. Unlike their animal counterparts, BRs are perceived at the plasma membrane by direct binding to the extracellular domain of the BRI1 receptor S/T kinase. BR perception initiates a signaling cascade, acting through a GSK3 kinase, BIN2, and the BSU1 phosphatase, which in turn modulates the phosphorylation state and stability of the nuclear transcription factors BES1 and BZR1. Microarray technology has been used extensively to provide a global view of BR genomic effects, as well as a specific set of target genes for BES1 and BZR1. These gene products thus provide a framework for how BRs regulate the growth of plants.
引用
收藏
页码:177 / 201
页数:25
相关论文
共 92 条
[1]   beta-catenin is a target for the ubiquitin-proteasome pathway [J].
Aberle, H ;
Bauer, A ;
Stappert, J ;
Kispert, A ;
Kemler, R .
EMBO JOURNAL, 1997, 16 (13) :3797-3804
[2]   Toll-like receptor signalling [J].
Akira, S ;
Takeda, K .
NATURE REVIEWS IMMUNOLOGY, 2004, 4 (07) :499-511
[3]   Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant [J].
Allen, GJ ;
Chu, SP ;
Schumacher, K ;
Shimazaki, CT ;
Vafeados, D ;
Kemper, A ;
Hawke, SD ;
Tallman, G ;
Tsien, RY ;
Harper, JF ;
Chory, J ;
Schroeder, JI .
SCIENCE, 2000, 289 (5488) :2338-2342
[4]   Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.) [J].
Anuradha, S ;
Rao, SSS .
PLANT GROWTH REGULATION, 2001, 33 (02) :151-153
[5]   Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis [J].
Bao, F ;
Shen, JJ ;
Brady, SR ;
Muday, GK ;
Asami, T ;
Yang, ZB .
PLANT PHYSIOLOGY, 2004, 134 (04) :1624-1631
[6]   Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments [J].
Breitling, R ;
Armengaud, P ;
Amtmann, A ;
Herzyk, P .
FEBS LETTERS, 2004, 573 (1-3) :83-92
[7]   BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis [J].
Caño-Delgado, A ;
Yin, YH ;
Yu, C ;
Vafeados, D ;
Mora-García, S ;
Cheng, JC ;
Nam, KH ;
Li, JM ;
Chory, J .
DEVELOPMENT, 2004, 131 (21) :5341-5351
[8]   Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana.: II.: Effects of brassinosteroids on microtubules and cell elongation in the bul1 mutant [J].
Catterou, M ;
Dubois, F ;
Schaller, H ;
Aubanelle, L ;
Vilcot, B ;
Sangwan-Norreel, BS ;
Sangwan, RS .
PLANTA, 2001, 212 (5-6) :673-683
[9]   Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3β-like kinase [J].
Choe, S ;
Schmitz, RJ ;
Fujioka, S ;
Takatsuto, S ;
Lee, MO ;
Yoshida, S ;
Feldmann, KA ;
Tax, FE .
PLANT PHYSIOLOGY, 2002, 130 (03) :1506-1515
[10]   Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis [J].
Choe, S ;
Fujioka, S ;
Noguchi, T ;
Takatsuto, S ;
Yoshida, S ;
Feldmann, KA .
PLANT JOURNAL, 2001, 26 (06) :573-582