Generalized center method for multiobjective engineering optimization

被引:52
作者
Cheng, FY [1 ]
Li, XS
机构
[1] Univ Missouri, Dept Civil Engn, Rolla, MO 65409 USA
[2] Dalian Univ Technol, Res Inst Engn Mech, Dalian 116023, Peoples R China
基金
美国国家科学基金会;
关键词
multiobjective optimization; generalized center method; minimax problem; smooth approximation; Pareto optimal set; trade-off factor;
D O I
10.1080/03052159908941390
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a new approach to multiobjective engineering optimization: the generalized center method (GCM). A multiobjective problem is solved by calculating the centers of a sequence of level sets. These sets comprise intersections of the original constraints and level constraints imposed on objective functions. In view of the different dimensions and conflicting nature of multiple objectives, some scaling and trade-off procedures are implemented. Several engineering optimization examples are given to demonstrate the effectiveness of the proposed method.
引用
收藏
页码:641 / 661
页数:21
相关论文
共 15 条
[1]  
0syczka A., 1984, MULTICRITERION OPTIM
[2]  
BENTAL A, 1989, LECT NOTES MATH, V1405, P1
[3]  
BORRI A, 1995, RELIABILITY OPTIMIZA, P88
[4]   Multiobjective optimization of structures with and without control [J].
Cheng, FY ;
Li, D .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1996, 19 (02) :392-397
[5]  
DUCKSTEIN L, 1984, NEW DIRECTIONS OPTIM, P459, DOI DOI 10.1002/OCA.4660060212
[6]  
Eschenauer H., 1990, MULTICRITERIA DESIGN
[7]   MULTIOBJECTIVE OPTIMIZATION OF LARGE-SCALE STRUCTURES [J].
GRANDHI, RV ;
BHARATRAM, G ;
VENKAYYA, VB .
AIAA JOURNAL, 1993, 31 (07) :1329-1337
[8]  
Huard P., 1967, NONLINEAR PROGRAMMIN, P207
[9]  
KOSKI J, 1984, NEW DIRECTIONS STRUC, P485
[10]  
LI D, 1997, THESIS U MISSOURI RO