Trapping of vibrational energy in crumpled sheets

被引:9
作者
Gopinathan, A [1 ]
Witten, TA
Venkataramani, SC
机构
[1] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[2] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[3] Univ Chicago, Dept Math, Chicago, IL 60637 USA
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.65.036613
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the propagation of transverse elastic waves in crumpled media. We set up the wave equation for transverse waves on a generic curved, strained surface via a Langrangian formalism and use this to study the scaling behavior of the dispersion curves near the ridges and on the flat facets. This analysis suggests that ridges act as barriers to wave propagation and that modes in a certain frequency regime could be trapped in the facets. A simulation study of the wave propagation qualitatively supported our analysis and showed interesting effects of the ridges on wave propagation.
引用
收藏
页码:1 / 036613
页数:11
相关论文
共 14 条
[1]   FERMAT PRINCIPLE, CAUSTICS, AND THE CLASSIFICATION OF GRAVITATIONAL LENS IMAGES [J].
BLANDFORD, R ;
NARAYAN, R .
ASTROPHYSICAL JOURNAL, 1986, 310 (02) :568-582
[2]   Anomalous strength of membranes with elastic ridges [J].
DiDonna, BA ;
Witten, TA .
PHYSICAL REVIEW LETTERS, 2001, 87 (20) :206105-1
[3]  
DIDONNA BA, CONDMAT0104119
[4]  
GOLDSTEIN H, 1980, CLASSICAL MECH, P66
[5]  
Landau LD, 1986, THEORY ELASTICITY
[6]   SCALING PROPERTIES OF STRETCHING RIDGES IN A CRUMPLED ELASTIC SHEET [J].
LOBKOVSKY, A ;
GENTGES, S ;
LI, H ;
MORSE, D ;
WITTEN, TA .
SCIENCE, 1995, 270 (5241) :1482-1485
[7]   Boundary layer analysis of the ridge singularity in a thin plate [J].
Lobkovsky, AE .
PHYSICAL REVIEW E, 1996, 53 (04) :3750-3759
[8]   Properties of ridges in elastic membranes [J].
Lobkovsky, AE ;
Witten, TA .
PHYSICAL REVIEW E, 1997, 55 (02) :1577-1589
[9]  
Milman RS, 1977, Elements of Differential Geometry
[10]  
PIERCE AD, 1989, ELASTIC WAVE PROPAGA, P205