Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations

被引:1228
作者
Liu, SK [1 ]
Fu, ZT
Liu, SD
Zhao, Q
机构
[1] Beijing Univ, Dept Geophys, Beijing 100871, Peoples R China
[2] Beijing Univ, SKLTR, Beijing 100871, Peoples R China
关键词
Jacobi elliptic function; nonlinear equation; cnoidal wave solution;
D O I
10.1016/S0375-9601(01)00580-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Jacobi elliptic function expansion method, which is more general than the hyperbolic tangent function expansion method, is proposed to construct the exact periodic solutions of nonlinear wave equations. It is shown that the periodic solutions obtained by this method include some shock wave solutions and solitary wave solutions. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:69 / 74
页数:6
相关论文
共 14 条
[1]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[2]   EXACT N-SOLITON SOLUTIONS OF WAVE-EQUATION OF LONG WAVES IN SHALLOW-WATER AND IN NONLINEAR LATTICES [J].
HIROTA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) :810-814
[3]   EXACT-SOLUTIONS OF THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION [J].
KUDRYASHOV, NA .
PHYSICS LETTERS A, 1990, 147 (5-6) :287-291
[4]   A simple fast method in finding particular solutions of some nonlinear PDE [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2001, 22 (03) :326-331
[5]   EXACT TRAVELING WAVE SOLUTIONS OF A CLASS OF NONLINEAR DIFFUSION-EQUATIONS BY REDUCTION TO A QUADRATURE [J].
OTWINOWSKI, M ;
PAUL, R ;
LAIDLAW, WG .
PHYSICS LETTERS A, 1988, 128 (09) :483-487
[6]   Travelling solitary wave solutions to a compound KdV-Burgers equation [J].
Parkes, EJ ;
Duffy, BR .
PHYSICS LETTERS A, 1997, 229 (04) :217-220
[7]   Some general periodic solutions to coupled nonlinear Schrodinger equations [J].
Porubov, AV ;
Parker, DF .
WAVE MOTION, 1999, 29 (02) :97-109
[8]   Exact periodic solutions of the complex Ginzburg-Landau equation [J].
Porubov, AV ;
Velarde, MG .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) :884-896
[9]   Periodical solution to the nonlinear dissipative equation for surface waves in a convecting liquid layer [J].
Porubov, AV .
PHYSICS LETTERS A, 1996, 221 (06) :391-394
[10]   SOLITARY WAVE SOLUTIONS FOR VARIANT BOUSSINESQ EQUATIONS [J].
WANG, ML .
PHYSICS LETTERS A, 1995, 199 (3-4) :169-172