Efficient adaptive density estimation per image pixel for the task of background subtraction

被引:1092
作者
Zivkovic, Z
van der Heijden, F
机构
[1] Univ Amsterdam, Fac Sci, NL-1098 SJ Amsterdam, Netherlands
[2] Univ Twente, NL-7500 AE Enschede, Netherlands
关键词
background subtraction; on-line density estimation; Gaussian mixture model; non-parametric density estimation;
D O I
10.1016/j.patrec.2005.11.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We analyze the computer vision task of pixel-level background subtraction. We present recursive equations that are used to constantly update the parameters of a Gaussian mixture model and to simultaneously select the appropriate number of components for each pixel. We also present a simple non-parametric adaptive density estimation method. The two methods are compared with each other and with some previously proposed algorithms. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:773 / 780
页数:8
相关论文
共 26 条
[1]  
[Anonymous], 1997, CVPR
[2]  
[Anonymous], 2001, P 2 EUR WORKSH ADV V
[3]  
Bishop C. M., 1996, Neural networks for pattern recognition
[4]  
CEMGIL AT, 2005, P C COMP VIS PATT RE
[5]  
Egan JP., 1975, SIGNAL DETECTION THE
[6]  
Elgammal A.M., 2000, P EUR C COMP VIS
[7]  
Everingham M, 2002, LECT NOTES COMPUT SC, V2353, P34
[8]   IMPROVED VARIABLE WINDOW KERNEL ESTIMATES OF PROBABILITY DENSITIES [J].
HALL, P ;
HU, TC ;
MARRON, JS .
ANNALS OF STATISTICS, 1995, 23 (01) :1-10
[9]  
HARVILLE M, 2002, P EUR C COMP VIS
[10]  
Hayman E, 2003, NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, P67