Quantum tunneling using entangled classical trajectories

被引:155
作者
Donoso, A [1 ]
Martens, CC [1 ]
机构
[1] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
关键词
D O I
10.1103/PhysRevLett.87.223202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, we present a new method for simulating quantum processes in the context of classical molecular dynamics simulations. The approach is based on solving numerically the quantum Liouville equation in the Wigner representation using ensembles of classical trajectories. Quantum effects arise in this formulation as a breakdown of the statistical independence of the ensemble. New interaction forces between ensemble members are derived, which require the trajectory ensemble representing the state to evolve as an entangled, unified whole. The method is applied to the simulation of quantum tunneling in a one-dimensional model system, yielding excellent agreement with exact quantum calculations.
引用
收藏
页码:223202 / 223202
页数:4
相关论文
共 17 条
[1]  
Allen M. P., 1987, COMPUTER SIMULATIONS, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[2]   Integrating the quantum Hamilton-Jacobi equations by wavefront expansion and phase space analysis [J].
Bittner, ER ;
Wyatt, RE .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (20) :8888-8897
[3]  
BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
[4]   A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF HIDDEN VARIABLES .2. [J].
BOHM, D .
PHYSICAL REVIEW, 1952, 85 (02) :180-193
[5]   Nonadiabatic dynamics via the classical limit Schrodinger equation [J].
Burant, JC ;
Tully, JC .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (14) :6097-6103
[6]  
de Broglie L, 1926, CR HEBD ACAD SCI, V183, P447
[7]   Multidimensional wave packet dynamics within the fluid dynamical formulation of the Schrodinger equation [J].
Dey, BK ;
Askar, A ;
Rabitz, H .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (20) :8770-8782
[8]   Mixing quantum and classical dynamics using Bohmian trajectories [J].
Gindensperger, E ;
Meier, C ;
Beswick, JA .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (21) :9369-9372
[9]   PROPAGATION METHODS FOR QUANTUM MOLECULAR-DYNAMICS [J].
KOSLOFF, R .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1994, 45 :145-178
[10]   THEORY AND APPLICATION OF THE QUANTUM PHASE-SPACE DISTRIBUTION-FUNCTIONS [J].
LEE, HW .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 259 (03) :147-211