Quantization of solitons and the restricted Sine-Gordon model

被引:46
作者
Babelon, O [1 ]
Bernard, D [1 ]
Smirnov, FA [1 ]
机构
[1] SERV PHYS THEOR SACLAY, LAB DIRECT SCI MATIERE COMMISSARIAT ENERGIE ATOM, F-91191 GIF SUR YVETTE, FRANCE
关键词
D O I
10.1007/BF02517893
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how to compute form factors, matrix elements of local fields, in the restricted sine-Gordon model, at the reflectionless points, by quantizing solitons. We introduce (quantum) separated variables in which the Hamiltonians are expressed in terms of (quantum) tau-functions. We explicitly describe the soliton wave functions, and we explain how the restriction is related to an unusual hermitian structure. We also present a semi-classical analysis which enlightens the fact that the restricted sine-Gordon model corresponds to an analytical continuation of the sine-Gordon model, intermediate between sine-Gordon and KdV.
引用
收藏
页码:319 / 354
页数:36
相关论文
共 32 条
[1]   THE SINE-GORDON SOLITONS AS AN N-BODY PROBLEM [J].
BABELON, O ;
BERNARD, D .
PHYSICS LETTERS B, 1993, 317 (03) :363-368
[2]   AFFINE SOLITONS - A RELATION BETWEEN TAU-FUNCTIONS, DRESSING AND BACKLUND-TRANSFORMATIONS [J].
BABELON, O ;
BERNARD, D .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (03) :507-543
[3]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[4]   THE FRACTIONAL SUPERSYMMETRIC SINE-GORDON MODELS [J].
BERNARD, D ;
LECLAIR, A .
PHYSICS LETTERS B, 1990, 247 (2-3) :309-316
[5]   QUANTUM GROUP SYMMETRIES AND NONLOCAL CURRENTS IN 2D QFT [J].
BERNARD, D ;
LECLAIR, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (01) :99-138
[6]   RESIDUAL QUANTUM SYMMETRIES OF THE RESTRICTED SINE-GORDON THEORIES [J].
BERNARD, D ;
LECLAIR, A .
NUCLEAR PHYSICS B, 1990, 340 (2-3) :721-751
[7]   QUANTUM SINE-GORDON EQUATION AS MASSIVE THIRRING MODEL [J].
COLEMAN, S .
PHYSICAL REVIEW D, 1975, 11 (08) :2088-2097
[8]   PARTICLE SPECTRUM IN MODEL FIELD-THEORIES FROM SEMICLASSICAL FUNCTIONAL INTEGRAL TECHNIQUES [J].
DASHEN, RF ;
HASSLACHER, B ;
NEVEU, A .
PHYSICAL REVIEW D, 1975, 11 (12) :3424-3450
[9]   HIROTA EQUATION AS AN EXAMPLE OF AN INTEGRABLE SYMPLECTIC MAP [J].
FADDEEV, L ;
VOLKOV, AY .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (02) :125-135
[10]  
Faddeev L. D, 1987, HAMILTONIAN METHODS