Interactions of STAT5b-RARα, a novel acute promyelocytic leukemia fusion protein, with retinoic acid receptor and STAT3 signaling pathways

被引:76
作者
Dong, S
Tweardy, DJ
机构
[1] Baylor Coll Med, Dept Med, Infect Dis Sect, Houston, TX 77030 USA
[2] Shanghai Rui Jin Hosp, Shanghai Inst Hematol, Shanghai, Peoples R China
关键词
D O I
10.1182/blood.V99.8.2637
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Signal transducer and activator of transcription (STAT) 5b-retinoic acid receptor (RAR) alpha is the fifth fusion protein identified in acute promyelocytic leukemia (APL). Initially described in a patient with all-trans retinoic acid (ATRA)-unresponsive disease, STAT5b-RARalpha, resulted from an interstitial deletion on chromosome 17. To determine the molecular mechanisms of myeloid leukemogenesis and maturation arrest in STAT5b-RARalpha(+) APL and its unresponsiveness to ATRA, we examined the effect of STAT5b-RARa on the activity of myeloid transcription factors including RARalpha/retinoid X receptor (RXR) alpha, STAT3, and STAT5 as well as its molecular interactions with the nuclear receptor corepressor, SMRT, and nuclear receptor coactivator, TRAM-1. STAT5b-RARalpha bound to retinoic acid response elements (RAREs) both as a homodimer and as a heterodimer with RXRalpha and inhibited wild-type RARalpha/RXRalpha transactivation. Although STAT5b-RARalpha had no effect on ligand-induced STAT5b activation, it enhanced interleukin 6-induced STAT3-dependent reporter activity, an effect shared by other APL fusion proteins including promyelocytic leukemia-RARalpha and promyelocytic leukemia zinc finger (PLZF)-RARalpha. SMRT was released from STAT5b-RARalpha/SMRT complexes by ATRA at 10(-6) M, whereas TRAM-1 became associated with STAT5b-RARalpha at 10(-7) M. The coiled-coil domain of STAT5b was required for formation of STAT5b-RARalpha ho-modimers, for the inhibition of RARalpha/RXRalpha transcriptional activity, and for stability of the STAT5b-RARalpha/SMRT complex. Thus, STAT5b-RARa contributes to myeloid maturation arrest by binding to RARE as either a homodimer or as a heterodimer with RXRalpha resulting in the recruitment of SMRT and inhibition of RARalpha/RXRalpha transcriptional activity. In addition, STAT5b-RARalpha and other APL fusion proteins may contribute to leukemogenesis by interaction with the STAT3 oncogene pathway. (C) 2002 by The American Society of Hematology.
引用
收藏
页码:2637 / 2646
页数:10
相关论文
共 66 条
[1]   The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor α in acute promyelocytic-like leukaemia [J].
Arnould, C ;
Philippe, C ;
Bourdon, V ;
Grégoire, MJ ;
Berger, R ;
Jonveaux, P .
HUMAN MOLECULAR GENETICS, 1999, 8 (09) :1741-1749
[2]   STATs in oncogenesis [J].
Bowman, T ;
Garcia, R ;
Turkson, J ;
Jove, R .
ONCOGENE, 2000, 19 (21) :2474-2488
[3]   The role of STATs in transcriptional control and their impact on cellular function [J].
Bromberg, J ;
Darnell, JE .
ONCOGENE, 2000, 19 (21) :2468-2473
[4]   Stat3 as an oncogene [J].
Bromberg, JF ;
Wrzeszczynska, MH ;
Devgan, G ;
Zhao, YX ;
Pestell, RG ;
Albanese, C ;
Darnell, JE .
CELL, 1999, 98 (03) :295-303
[5]   Stat3 activation is required for cellular transformation by v-src [J].
Bromberg, JF ;
Horvath, CM ;
Besser, D ;
Lathem, WW ;
Darnell, JE .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (05) :2553-2558
[6]   Identification of a novel Stat3 recruitment and activation motif within the granulocyte colony-stimulating factor receptor [J].
Chakraborty, A ;
Dyer, KF ;
Cascio, M ;
Mietzner, TA ;
Tweardy, DJ .
BLOOD, 1999, 93 (01) :15-24
[7]   A decade of molecular biology of retinoic acid receptors [J].
Chambon, P .
FASEB JOURNAL, 1996, 10 (09) :940-954
[8]   Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300 [J].
Chen, HW ;
Lin, RJ ;
Schiltz, RL ;
Chakravarti, D ;
Nash, A ;
Nagy, L ;
Privalsky, ML ;
Nakatani, Y ;
Evans, RM .
CELL, 1997, 90 (03) :569-580
[9]   A TRANSCRIPTIONAL CO-REPRESSOR THAT INTERACTS WITH NUCLEAR HORMONE RECEPTORS [J].
CHEN, JD ;
EVANS, RM .
NATURE, 1995, 377 (6548) :454-457
[10]  
Chen Z, 1996, GENE CHROMOSOME CANC, V15, P147, DOI 10.1002/(SICI)1098-2264(199603)15:3<147::AID-GCC1>3.0.CO