Cell-type-specific GABA responses and chloride homeostasis in the cortex and amygdala

被引:127
作者
Martina, M [1 ]
Royer, S [1 ]
Paré, D [1 ]
机构
[1] Univ Laval, Dept Physiol, Neurophysiol Lab, Fac Med, Quebec City, PQ G1K 7P4, Canada
关键词
D O I
10.1152/jn.2001.86.6.2887
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The GABA responses of fast-spiking (FS) interneurons and regular-spiking (RS) principal cells were studied using whole cell and perforated-patch recordings in slices of the basolateral amygdala, neo-, and perirhinal cortex. In these three areas, responses to exogenous and synaptically released GABA were abolished by GABA(A) receptor antagonists in FS cells but also included a GABA(B) component in RS cells. Moreover, E-GABAA of FS and RS cells differed from the calculated E-Cl (-61 mV), but in opposite direction (FS, -54 mV; RS, -72 mV). This was not due to a differential dialysis of FS and RS cells by the pipette solution because the discrepancy persisted when recordings were obtained with the perforated-patch-clamp technique, using the cation-selective ionophore gramicidin. Moreover, pharmacological inhibition of cation-chloride cotransporters revealed that the differing E-GABAA of FS and RS neurons arises from cell-type-specific chloride homeostatic mechanisms. Indeed, the prevalent regulators of the intracellular chloride concentration are cotransporters that accumulate chloride in FS cells and extrude chloride in RS neurons. Thus, our results suggest that in the basolateral amygdala as well as in the parietal and perirhinal cortices, FS interneurons are more excitable than principal cells not only by virtue of their dissimilar electroresponsive properties but also because they express a different complement of GABA receptors and chloride homeostatic mechanisms.
引用
收藏
页码:2887 / 2895
页数:9
相关论文
共 64 条
[1]   2 DIFFERENT RESPONSES OF HIPPOCAMPAL PYRAMIDAL CELLS TO APPLICATION OF GAMMA-AMINO BUTYRIC-ACID [J].
ANDERSEN, P ;
DINGLEDINE, R ;
GJERSTAD, L ;
LANGMOEN, IA ;
LAURSEN, AM .
JOURNAL OF PHYSIOLOGY-LONDON, 1980, 305 (AUG) :279-296
[2]   MECHANISM OF ANION PERMEATION THROUGH CHANNELS GATED BY GLYCINE AND GAMMA-AMINOBUTYRIC-ACID IN MOUSE CULTURED SPINAL NEURONS [J].
BORMANN, J ;
HAMILL, OP ;
SAKMANN, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1987, 385 :243-286
[3]   Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro [J].
Buhl, EH ;
Tamás, G ;
Fisahn, A .
JOURNAL OF PHYSIOLOGY-LONDON, 1998, 513 (01) :117-126
[4]   TEMPORAL STRUCTURE IN SPATIALLY ORGANIZED NEURONAL ENSEMBLES - A ROLE FOR INTERNEURONAL NETWORKS [J].
BUZSAKI, G ;
CHROBAK, JJ .
CURRENT OPINION IN NEUROBIOLOGY, 1995, 5 (04) :504-510
[5]   THE BASOLATERAL AMYGDALOID COMPLEX AS A CORTICAL-LIKE STRUCTURE [J].
CARLSEN, J ;
HEIMER, L .
BRAIN RESEARCH, 1988, 441 (1-2) :377-380
[6]  
Cauli B, 1997, J NEUROSCI, V17, P3894
[7]   SYNCHRONIZATION OF NEURONAL-ACTIVITY IN HIPPOCAMPUS BY INDIVIDUAL GABAERGIC INTERNEURONS [J].
COBB, SR ;
BUHL, EH ;
HALASY, K ;
PAULSEN, O ;
SOMOGYI, P .
NATURE, 1995, 378 (6552) :75-78
[8]   ELECTRO-PHYSIOLOGICAL PROPERTIES OF NEOCORTICAL NEURONS INVITRO [J].
CONNORS, BW ;
GUTNICK, MJ ;
PRINCE, DA .
JOURNAL OF NEUROPHYSIOLOGY, 1982, 48 (06) :1302-1320
[9]   Mechanisms and functional significance of a slow inhibitory potential in neurons of the lateral amygdala [J].
Danober, L ;
Pape, HC .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1998, 10 (03) :853-867
[10]   Effect of bicuculline on thalamic activity:: A direct blockade of IAHP in reticularis neurons [J].
Debarbieux, F ;
Brunton, J ;
Charpak, S .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 79 (06) :2911-2918