An application of zero-inflated Poisson regression for software fault prediction

被引:38
作者
Khoshgoftaar, TM [1 ]
Gao, KH [1 ]
Szabo, RM [1 ]
机构
[1] Florida Atlantic Univ, Empir Software Engn Lab, Dept Comp Sci & Engn, Boca Raton, FL 33431 USA
来源
12TH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING, PROCEEDINGS | 2001年
关键词
software quality modeling; Poisson regression model; zero-inflated Poisson regression model; nested models; Vuong hypothesis test; program module;
D O I
10.1109/ISSRE.2001.989459
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Poisson regression model is widely used in software quality modeling. When the response variable of a data set includes a large number of zeros, Poisson regression model will underestimate the probability of zeros. A zero-inflated model changes the mean structure of the pure Poisson model. The predictive quality is therefore improved. In this paper, we examine a full-scale industrial software system and develop two models, Poisson regression and zero-inflated Poisson regression. To our knowledge, this is the,first study that introduces the zero-inflated Poisson regression model in software reliability. Comparing the predictive qualities of the two competing models, we conclude that for this system, the zero-inflated Poisson regression model is more appropriate in theory and practice.
引用
收藏
页码:66 / 73
页数:8
相关论文
共 18 条
[1]  
[Anonymous], 1996, HDB STAT
[2]  
[Anonymous], J EMPIRICAL FINANCE
[3]  
Berenson M.L., 1983, Intermediate Statistical Methods and Applications: A Computer Package Approach, V2nd
[4]  
Cameron A.C., 1998, Regression Analysis of Count Data, V30
[5]  
COX D. R., 2000, Theoretical Statistics
[6]  
COX RD, 1961, P 4 BERK S MATH STAT, P105
[7]  
COX RD, 1962, J ROYAL STAT SOC B, P406
[8]   A MIXED POISSON INVERSE-GAUSSIAN REGRESSION-MODEL [J].
DEAN, C ;
LAWLESS, JF ;
WILLMOT, GE .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1989, 17 (02) :171-181
[9]  
GREEN WH, 1994, EC9410 NEW YORK U EC
[10]  
Greene WH., 2000, Econ Analysis