FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway

被引:288
作者
Sahni, M
Ambrosetti, DC
Mansukhani, A
Gertner, R
Levy, D
Basilico, C [1 ]
机构
[1] NYU, Sch Med, Dept Microbiol, New York, NY 10016 USA
[2] NYU, Sch Med, Dept Pathol, New York, NY 10016 USA
关键词
FGF signaling; chondrocytic maturation; bone development; STAT-1;
D O I
10.1101/gad.13.11.1361
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Several genetic forms of human dwarfism have been linked to activating mutations in FGF receptor 3, indicating that FGF signaling has a critical role in chondrocyte maturation and skeletal development. However, the mechanisms through which FGFs affect chondrocyte proliferation and differentiation remain poorly understood. We show here that activation of FGF signaling inhibits chondrocyte proliferation both in a rat chondrosarcoma (RCS) cell line and in primary murine chondrocytes. FGF treatment of RCS cells induces phosphorylation of STAT-1, its translocation to the nucleus, and an increase in the expression of the cell-cycle inhibitor p21WAF1/CIP1. We have used primary chondrocytes from STAT-1 knock-out mice to provide genetic evidence that STAT-1 function is required for the FGF mediated growth inhibition. Furthermore, FGF treatment of metatarsal rudiments from wild-type and STAT(-/-) murine embryos produces a drastic impairment of chondrocyte proliferation and bone development in wild-type, but not in STAT-1(-/-) rudiments. We propose that STAT-1 mediated down regulation of chondrocyte proliferation by FGF signaling is an homeostatic mechanism which ensures harmonious bone development and morphogenesis.
引用
收藏
页码:1361 / 1366
页数:6
相关论文
共 28 条
[1]  
ABDOLLAHI A, 1991, CELL GROWTH DIFFER, V2, P401
[2]   Bcl-2 lies downstream of parathyroid hormone-related peptide in a signaling pathway that regulates chondrocyte maturation during skeletal development [J].
Amling, M ;
Neff, L ;
Tanaka, S ;
Inoue, D ;
Kuida, K ;
Weir, E ;
Philbrick, WM ;
Broadus, AE ;
Baron, R .
JOURNAL OF CELL BIOLOGY, 1997, 136 (01) :205-213
[3]   THE FGF FAMILY OF GROWTH-FACTORS AND ONCOGENES [J].
BASILICO, C ;
MOSCATELLI, D .
ADVANCES IN CANCER RESEARCH, 1992, 59 :115-165
[4]   Fibroblast growth factor receptors: lessons from the genes [J].
Burke, D ;
Wilkes, D ;
Blundell, TL ;
Malcolm, S .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (02) :59-62
[5]   Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21(WAF1/CIP1) mediated by STAT1 [J].
Chin, YE ;
Kitagawa, M ;
Su, WCS ;
You, ZH ;
Iwamoto, Y ;
Fu, XY .
SCIENCE, 1996, 272 (5262) :719-722
[6]   ABNORMAL BONE-GROWTH AND SELECTIVE TRANSLATIONAL REGULATION IN BASIC FIBROBLAST GROWTH-FACTOR (FGF-2) TRANSGENIC MICE [J].
COFFIN, JD ;
FLORKIEWICZ, RZ ;
NEUMANN, J ;
MORTHOPKINS, T ;
DORN, GW ;
LIGHTFOOT, P ;
GERMAN, R ;
HOWLES, PN ;
KIER, A ;
OTOOLE, BA ;
SASSE, J ;
GONZALEZ, AM ;
BAIRD, A ;
DOETSCHMAN, T .
MOLECULAR BIOLOGY OF THE CELL, 1995, 6 (12) :1861-1873
[7]   Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3 [J].
Colvin, JS ;
Bohne, BA ;
Harding, GW ;
McEwen, DG ;
Ornitz, DM .
NATURE GENETICS, 1996, 12 (04) :390-397
[8]   STATs and gene regulation [J].
Darnell, JE .
SCIENCE, 1997, 277 (5332) :1630-1635
[9]   Fibroblast growth factor receptor 3 is a negative regulator of bone growth [J].
Deng, CX ;
WynshawBoris, A ;
Zhou, F ;
Kuo, A ;
Leder, P .
CELL, 1996, 84 (06) :911-921
[10]   Targeted disruption of the mouse STAT1 results in compromised innate immunity to viral disease [J].
Durbin, JE ;
Hackenmiller, R ;
Simon, MC ;
Levy, DE .
CELL, 1996, 84 (03) :443-450