Early Stages in the Nucleation Process of Carbon Nanotubes

被引:73
作者
Moors, Matthieu [1 ]
Amara, Hakim [2 ]
de Bocarme, Thierry Visart [1 ]
Bichara, Christophe [4 ,5 ]
Ducastelle, Francois [3 ]
Kruse, Norbert [1 ]
Charlier, Jean-Christophe [6 ]
机构
[1] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium
[2] CEA Saclay, Lab Francis Perrin, F-91191 Gif Sur Yvette, France
[3] ONERA CNRS, Lab Etud Microstruct, F-92322 Chatillon, France
[4] Aix Marseille Univ, F-13288 Marseille, France
[5] CNRS, CINaM, F-13288 Marseille, France
[6] Univ Catholique Louvain, European Theoret Spect Facil ETSF, Unite Phys Chim & Phys Mat PCPM, B-1348 Louvain, Belgium
关键词
carbon nanotubes; chemical vapor deposition; field ion microscopy; atom-probe; Monte Carlo simulations; tight-binding; IN-SITU; CLOCK RECONSTRUCTION; GROWTH; NI(111); CARBIDE; SURFACE; SCALE; STM; DYNAMICS;
D O I
10.1021/nn800769w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The early stages of carbon nanotube nucleation are investigated using field ion/electron microscopy along with in situ local chemical probing of a single nanosized nickel crystal. Togo beyond experiments, tight-binding Monte Carlo simulations are performed on oriented Ni slabs. Real-time field electron imaging demonstrates a carbon-induced increase of the number density of steps in the truncated vertices of a polyhedral Ni nanoparticle. The necessary diffusion and step-site trapping of adsorbed carbon atoms are observed in the simulations and precede the nucleation of graphene-based sheets in these steps. Chemical probing of selected nanofacets of the Ni crystal reveals the occurrence of C-n (n = 1-4) surface species. Kinetic studies prove C2+ species are formed from C-1 with a delay time of several milliseconds at 623 K. Carbon dimers, C-2, must not necessarily be formed on the Ni surface. Tight-binding Monte Carlo simulations reveal the high stability of such dimers in the first layer beneath the surface.
引用
收藏
页码:511 / 516
页数:6
相关论文
共 33 条
[1]   Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations [J].
Abild-Pedersen, F ;
Norskov, JK ;
Rostrup-Nielsen, JR ;
Sehested, J ;
Helveg, S .
PHYSICAL REVIEW B, 2006, 73 (11)
[2]   Understanding the nucleation mechanisms of carbon nanotubes in catalytic chemical vapor deposition [J].
Amara, H. ;
Bichara, C. ;
Ducastelle, F. .
PHYSICAL REVIEW LETTERS, 2008, 100 (05)
[3]   Formation of carbon nanostructures on nickel surfaces: A tight-binding grand canonical Monte Carlo study [J].
Amara, H ;
Bichara, C ;
Ducastelle, F .
PHYSICAL REVIEW B, 2006, 73 (11)
[4]   Tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system [J].
Amara, H. ;
Roussel, J. -M. ;
Bichara, C. ;
Gaspard, J. -P. ;
Ducastelle, F. .
PHYSICAL REVIEW B, 2009, 79 (01)
[5]   NUCLEATION AND GROWTH OF CARBON DEPOSITS FROM NICKEL CATALYZED DECOMPOSITION OF ACETYLENE [J].
BAKER, RTK ;
BARBER, MA ;
WAITE, RJ ;
HARRIS, PS ;
FEATES, FS .
JOURNAL OF CATALYSIS, 1972, 26 (01) :51-&
[6]   Catalytically assisted tip growth mechanism for single-wall carbon nanotubes [J].
Charlier, J. -C. ;
Amara, H. ;
Lambin, Ph. .
ACS NANO, 2007, 1 (03) :202-207
[7]  
Charlier J.-C., 1997, SCIENCE, V275, P647, DOI DOI 10.1126/SCIENCE.275.5300.647
[8]   Photoelectric work function studies of carbonaceous films containing Ni nanocrystals [J].
Czerwosz, E ;
Dluzewski, P ;
Kutner, T ;
Stacewicz, T .
THIN SOLID FILMS, 2003, 423 (02) :161-168
[9]   Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth [J].
Ding, F ;
Rosén, A ;
Bolton, K .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (06) :2775-2779
[10]  
Frenkel D., 1996, UNDERSTANDING COMPUT