Ion-binding properties of the ClC chloride selectivity filter

被引:80
作者
Lobet, S [1 ]
Dutzler, R [1 ]
机构
[1] Univ Zurich, Dept Biochem, CH-8057 Zurich, Switzerland
关键词
ClC chloride channels and transporters; ion selectivity; ion transport; selectivity filter; X-ray crystallography;
D O I
10.1038/sj.emboj.7600909
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ClC channels are members of a large protein family of chloride (Cl-) channels and secondary active Cl- transporters. Despite their diverse functions, the transmembrane architecture within the family is conserved. Here we present a crystallographic study on the ion-binding properties of the ClC selectivity filter in the close homolog from Escherichia coli (EcClC). The ClC selectivity filter contains three ion-binding sites that bridge the extra- and intracellular solutions. The sites bind Cl- ions with mM affinity. Despite their close proximity within the filter, the three sites can be occupied simultaneously. The ion-binding properties are found conserved from the bacterial transporter EcClC to the human Cl- channel ClC-1, suggesting a close functional link between ion permeation in the channels and active transport in the transporters. In resemblance to K+ channels, ions permeate the ClC channel in a single file, with mutual repulsion between the ions fostering rapid conduction.
引用
收藏
页码:24 / 33
页数:10
相关论文
共 34 条
[1]   Ionic currents mediated by a prokaryotic homologue of CLC Cl- channels [J].
Accardi, A ;
Kolmakova-Partensky, L ;
Williams, C ;
Miller, C .
JOURNAL OF GENERAL PHYSIOLOGY, 2004, 123 (02) :109-119
[2]   Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels [J].
Accardi, A ;
Miller, C .
NATURE, 2004, 427 (6977) :803-807
[3]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[5]   Side-chain charge effects and conductance determinants in the pore of CIC-0 chloride channels [J].
Chen, MF ;
Chen, TY .
JOURNAL OF GENERAL PHYSIOLOGY, 2003, 122 (02) :133-145
[6]   Nonequilibrium gating and voltage dependence of the ClC-0 Cl- channel [J].
Chen, TY ;
Miller, C .
JOURNAL OF GENERAL PHYSIOLOGY, 1996, 108 (04) :237-250
[7]  
Cowtan K., 1994, JOINT CCP4 ESF EACBM, V31, P34
[8]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[9]   Structural basis for ion conduction and gating in ClC chloride channels [J].
Dutzler, R .
FEBS LETTERS, 2004, 564 (03) :229-233
[10]   X-ray structure of a CIC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity [J].
Dutzler, R ;
Campbell, EB ;
Cadene, M ;
Chait, BT ;
MacKinnon, R .
NATURE, 2002, 415 (6869) :287-294