Optogenetic analysis of synaptic function

被引:108
作者
Liewald, Jana F. [1 ]
Brauner, Martin [1 ]
Stephens, Greg J. [2 ]
Bouhours, Magali [3 ]
Schultheis, Christian [1 ]
Zhen, Mei [3 ]
Gottschalk, Alexander [1 ,4 ]
机构
[1] Goethe Univ Frankfurt, Inst Biochem, Dept Biochem Chem & Pharm, D-60438 Frankfurt, Germany
[2] Princeton Univ, Carl Icahn Lab, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[3] Mt Sinai Hosp, Samuel Lunenfeld Res Inst, Toronto, ON M5G 1X5, Canada
[4] Goethe Univ Frankfurt, Cluster Excellence Frankfurt Macromol Complexes, D-60438 Frankfurt, Germany
基金
美国国家卫生研究院;
关键词
D O I
10.1038/NMETH.1252
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We introduce optogenetic investigation of neurotransmission (OptIoN) for time-resolved and quantitative assessment of synaptic function via behavioral and electrophysiological analyses. We photo-triggered release of acetylcholine or gamma-aminobutyric acid at Caenorhabditis elegans neuromuscular junctions using targeted expression of Chlamydomonas reinhardtii Channelrhodopsin-2. In intact Channelrhodopsin-2 transgenic worms, photostimulation instantly induced body elongation (for gamma-aminobutyric acid) or contraction ( for acetylcholine), which we analyzed acutely, or during sustained activation with automated image analysis, to assess synaptic efficacy. In dissected worms, photostimulation evoked neurotransmitter-specific postsynaptic currents that could be triggered repeatedly and at various frequencies. Light-evoked behaviors and postsynaptic currents were significantly (P <= 0.05) altered in mutants with pre- or postsynaptic defects, although the behavioral phenotypes did not unambiguously report on synaptic function in all cases tested. OptIoN facilitates the analysis of neurotransmission with high temporal precision, in a neurotransmitter-selective manner, possibly allowing future investigation of synaptic plasticity in C. elegans.
引用
收藏
页码:895 / 902
页数:8
相关论文
共 31 条
[1]   THE CAENORHABDITIS-ELEGANS UNC-17 GENE - A PUTATIVE VESICULAR ACETYLCHOLINE TRANSPORTER [J].
ALFONSO, A ;
GRUNDAHL, K ;
DUERR, JS ;
HAN, HP ;
RAND, JB .
SCIENCE, 1993, 261 (5121) :617-619
[2]  
Bamber BA, 1999, J NEUROSCI, V19, P5348
[3]   Millisecond-timescale, genetically targeted optical control of neural activity [J].
Boyden, ES ;
Zhang, F ;
Bamberg, E ;
Nagel, G ;
Deisseroth, K .
NATURE NEUROSCIENCE, 2005, 8 (09) :1263-1268
[4]  
BRENNER S, 1974, GENETICS, V77, P71
[5]   Bridging the gap between genes and behavior:: recent advances in the electrophysiological analysis of neural function in Caenorhabditis elegans [J].
Francis, MM ;
Mellem, JE ;
Maricq, AV .
TRENDS IN NEUROSCIENCES, 2003, 26 (02) :90-99
[6]   Heterogeneity in synaptic transmission along a Drosophila larval motor axon [J].
Guerrero, G ;
Reiff, DF ;
Agarwal, G ;
Ball, RW ;
Borst, A ;
Goodman, CS ;
Isacoff, EY .
NATURE NEUROSCIENCE, 2005, 8 (09) :1188-1196
[7]   Open syntaxin docks synaptic vesicles [J].
Hammarlund, Marc ;
Palfreyman, Mark T. ;
Watanabe, Shigeki ;
Olsen, Shawn ;
Jorgensen, Erik M. .
PLOS BIOLOGY, 2007, 5 (08) :1695-1711
[8]   Mutations in synaptojanin disrupt synaptic vesicle recycling [J].
Harris, TW ;
Hartwieg, E ;
Horvitz, HR ;
Jorgensen, EM .
JOURNAL OF CELL BIOLOGY, 2000, 150 (03) :589-599
[9]   DEFECTIVE RECYCLING OF SYNAPTIC VESICLES IN SYNAPTOTAGMIN MUTANTS OF CAENORHABDITIS-ELEGANS [J].
JORGENSEN, EM ;
HARTWIEG, E ;
SCHUSKE, K ;
NONET, ML ;
JIN, YS ;
HORVITZ, HR .
NATURE, 1995, 378 (6553) :196-199
[10]   Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopin and green algae channelrhodopsin [J].
Li, X ;
Gutierrez, DV ;
Hanson, MG ;
Han, J ;
Mark, MD ;
Chiel, H ;
Hegemann, P ;
Landmesser, LT ;
Herlitze, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (49) :17816-17821