Mutations in the Tetrahymena ribozyme internal guide sequence: Effects on docking of the P1 helix into the catalytic core and correlation with catalytic activity

被引:16
作者
Campbell, TB [1 ]
Cech, TR [1 ]
机构
[1] UNIV COLORADO,DEPT CHEM & BIOCHEM,HOWARD HUGHES MED INST,BOULDER,CO 80309
关键词
D O I
10.1021/bi960510z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Binding of substrate by the ribozyme derived from the self-splicing intron of Tetrahymena thermophila involves at least two steps. In the first step, base pairing between the ribozyme internal guide sequence (IGS) and the substrate forms a helical duplex (P1). Through specific tertiary interactions between P1 and the ribozyme core, P1 is then docked into the ribozyme active site, We have investigated the effects of compensatory mutations in positions 2-6 of the P1 helix on docking of P1 into the ribozyme core. Equilibrium binding of matching oligonucleotides by catalytically active IGS mutant ribozymes was evaluated by gel-shift analysis. While the strength of base pairing changed with base composition as expected, the strength of tertiary interactions between P1 and the ribozyme core was not affected by the P1 mutations. These results support a model in which efficient docking of P1 is determined by P1 structure and the presence of a conserved G-U pair. Determination of the rate of dissociation of matching oligonucleotides from each ribozyme revealed that mutations in the IGS change the tightness of binding by increasing or decreasing the dissociation rate. Surprisingly, dissociation rates determined in this fashion were 20-900-fold less than the values of the multiple-turnover rate constant for these ribozymes, initially suggesting that turnover did not require product dissociation. A more detailed analysis for the wild-type ribozyme defined two distinct product dissociation rates. The slower rate equaled that determined under the conditions used for the equilibrium binding studies, The weighted average of the two dissociation rates equaled the multiple-turnover rate constant. These results are explained by a model in which ribozyme preparations consist of two ribozyme conformers: one with tight docking of P1 and another with weaker docking of P1.
引用
收藏
页码:11493 / 11502
页数:10
相关论文
共 30 条
[1]   ONE BINDING-SITE DETERMINES SEQUENCE SPECIFICITY OF TETRAHYMENA PRE-RIBOSOMAL-RNA SELF-SPLICING, TRANSSPLICING, AND RNA ENZYME-ACTIVITY [J].
BEEN, MD ;
CECH, TR .
CELL, 1986, 47 (02) :207-216
[2]   COOPERATIVE AND ANTICOOPERATIVE BINDING TO A RIBOZYME [J].
BEVILACQUA, PC ;
JOHNSON, KA ;
TURNER, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (18) :8357-8361
[3]   COMPARISON OF BINDING OF MIXED RIBOSE DEOXYRIBOSE ANALOGS OF CUCU TO A RIBOZYME AND TO GGAGAA BY EQUILIBRIUM DIALYSIS - EVIDENCE FOR RIBOZYME SPECIFIC INTERACTIONS WITH 2' OH GROUPS [J].
BEVILACQUA, PC ;
TURNER, DH .
BIOCHEMISTRY, 1991, 30 (44) :10632-10640
[4]   DYNAMICS OF RIBOZYME BINDING OF SUBSTRATE REVEALED BY FLUORESCENCE-DETECTED STOPPED-FLOW METHODS [J].
BEVILACQUA, PC ;
KIERZEK, R ;
JOHNSON, KA ;
TURNER, DH .
SCIENCE, 1992, 258 (5086) :1355-1357
[5]  
BEVILACQUA PC, 1993, THESIS U ROCHESTER R
[6]  
CAMPBELL TB, 1995, RNA, V1, P598
[7]   MAKING ENDS MEET - A MODEL FOR RNA SPLICING IN FUNGAL MITOCHONDRIA [J].
DAVIES, RW ;
WARING, RB ;
RAY, JA ;
BROWN, TA ;
SCAZZOCCHIO, C .
NATURE, 1982, 300 (5894) :719-724
[8]   RNA STRUCTURE, NOT SEQUENCE, DETERMINES THE 5' SPLICE-SITE SPECIFICITY OF A GROUP-I INTRON [J].
DOUDNA, JA ;
CORMACK, BP ;
SZOSTAK, JW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (19) :7402-7406
[9]   A TERTIARY INTERACTION IN THE TETRAHYMENA INTRON CONTRIBUTES TO SELECTION OF THE 5' SPLICE-SITE [J].
DOWNS, WD ;
CECH, TR .
GENES & DEVELOPMENT, 1994, 8 (10) :1198-1211
[10]  
Fersht A., 1985, ENZYME STRUCTURE MEC, P129