Vortices with antiferromagnetic cores in the SO(5) model of high-temperature superconductivity

被引:18
作者
Alama, S [1 ]
Berlinsky, AJ
Bronsard, L
Giorgi, T
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4M1, Canada
[2] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada
来源
PHYSICAL REVIEW B | 1999年 / 60卷 / 09期
关键词
D O I
10.1103/PhysRevB.60.6901
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the problem of superconducting Ginzburg-Landau (GL) vortices with antiferromagnetic cores which arise in Zhang's SO(5) model of antiferromagnetism (AF) and high-temperature superconductivity (SC). This problem was previously considered by Arovas et al. who constructed approximate "variational" solutions, in the large kappa limit, to estimate the domain of stability of such vortices in the temperature-chemical potential phase diagram. By solving the GL equations numerically for general kappa, we show that the amplitude of the antiferromagnetic component at the vortex core decreases to zero continuously at a critical value of the AF-SC anisotropy (g approximate to 0.25) which is essentially independent of kappa for large kappa. The magnetic field profile, the vortex line energy and the value of the B field at the center of the vortex core, as functions of anisotropy are also presented. [S0163-1829(99)04333-7].
引用
收藏
页码:6901 / 6906
页数:6
相关论文
共 10 条
[1]  
Abrikosov AA, 1957, ZH EKSP TEOR FIZ, V32, p[1442, 1174], DOI DOI 10.1103/PHYSREV.133.A1226
[2]  
Alama S., UNPUB
[3]   Superconducting vortex with antiferromagnetic core [J].
Arovas, DP ;
Berlinsky, AJ ;
Kallin, C ;
Zhang, SC .
PHYSICAL REVIEW LETTERS, 1997, 79 (15) :2871-2874
[4]   SYMMETRIC VORTICES FOR THE GINZBERG-LANDAU EQUATIONS OF SUPERCONDUCTIVITY AND THE NONLINEAR DESINGULARIZATION PHENOMENON [J].
BERGER, MS ;
CHEN, YY .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 82 (02) :259-295
[5]   Excitations in antiferromagnetic cores of superconducting vortices [J].
Bruus, H ;
Eriksen, KA ;
Hallundbæk, M ;
Hedegård, P .
PHYSICAL REVIEW B, 1999, 59 (06) :4349-4357
[6]   NUMERICAL CONSTANTS FOR ISOLATED VORTICES IN SUPERCONDUCTORS [J].
HU, CR .
PHYSICAL REVIEW B, 1972, 6 (05) :1756-&
[7]  
JAFFE A, 1980, VORTICES MONOPOLES S
[8]  
Plohr B., 1980, THESIS PRINCETON U
[9]  
Tinkham M., 1996, INTRO SUPERCONDUCTIV
[10]   A unified theory based on SO(5) symmetry of superconductivity and antiferromagnetism [J].
Zhang, SC .
SCIENCE, 1997, 275 (5303) :1089-1096