Multichain mean-field theory of quasi-one-dimensional quantum spin systems

被引:94
作者
Sandvik, AW
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Calif Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
关键词
D O I
10.1103/PhysRevLett.83.3069
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A multichain mean-field theory is developed and applied to a two-dimensional system of weakly coupled S = 1/2 Heisenberg chains. The environment of a chain C-0 is modeled by a number of neighboring chains C-delta, delta = +/-1,..., +/-n, with the edge chains C+/-n coupled to a staggered field. Using a quantum Monte Carlo method, the effective (2n + 1)-chain Hamiltonian is solved self-consistently for n UP to 4. The results an compared with simulation results for the original Hamiltonian on large rectangular lattices. Both methods show that the staggered magnetization M for small interchain couplings alpha behaves as M similar to root alpha enhanced by a multiplicative logarithmic correction.
引用
收藏
页码:3069 / 3072
页数:4
相关论文
共 30 条
[1]   Field-induced gap in Cu benzoate and other S=1/2 antiferromagnetic chains [J].
Affleck, I ;
Oshikawa, M .
PHYSICAL REVIEW B, 1999, 60 (02) :1038-1056
[2]   CRITICAL-BEHAVIOR OF SPIN-S HEISENBERG ANTIFERROMAGNETIC CHAINS - ANALYTIC AND NUMERICAL RESULTS [J].
AFFLECK, I ;
GEPNER, D ;
SCHULZ, HJ ;
ZIMAN, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (05) :511-529
[3]   On a renormalization group approach to dimensional crossover [J].
Affleck, I ;
Halperin, BI .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (11) :2627-2631
[4]   A PLANE OF WEAKLY COUPLED HEISENBERG-CHAINS - THEORETICAL ARGUMENTS AND NUMERICAL-CALCULATIONS [J].
AFFLECK, I ;
GELFAND, MP ;
SINGH, RRP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (22) :7313-7325
[5]  
[Anonymous], 1962, PHYS REV, DOI DOI 10.1103/PHYSREV.128.2131
[6]  
AOKI T, 1994, J PHYS SOC JPN, V64, P605
[7]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[8]  
BYERS WJL, 1986, PHYS REV LETT, V56, P371
[9]   WHAT IS THE SPIN OF A SPIN-WAVE [J].
FADDEEV, LD ;
TAKHTAJAN, LA .
PHYSICS LETTERS A, 1981, 85 (6-7) :375-377
[10]   CORRELATION-FUNCTIONS OF ONE-DIMENSIONAL QUANTUM-SYSTEMS [J].
GIAMARCHI, T ;
SCHULZ, HJ .
PHYSICAL REVIEW B, 1989, 39 (07) :4620-4629