Isolation of Solid Solution Phases in Size-Controlled LixFePO4 at Room Temperature

被引:255
作者
Kobayashi, Genki [1 ]
Nishimura, Shn-ichi [1 ]
Park, Min-Sik [1 ]
Kanno, Ryoji [1 ]
Yashima, Masatomo [2 ]
Ida, Takashi [3 ]
Yamada, Atsuo [1 ]
机构
[1] Tokyo Inst Technol, Dept Elect Chem, Interdisciplinary Grad Sch Sci & Engn, Midori Ku, Yokohama, Kanagawa 2268502, Japan
[2] Tokyo Inst Technol, Dept Mat Sci & Engn, Interdisciplinary Grad Sch Sci & Engn, Midori Ku, Yokohama, Kanagawa 2268502, Japan
[3] Nagoya Inst Technol, Ceram Res Lab, Asahigaoka, Tajimi 5070071, Japan
关键词
PHOSPHO-OLIVINES; MISCIBILITY GAP; LIFEPO4; FEPO4;
D O I
10.1002/adfm.200801522
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
State-of-the-art LiFePO4, technology has now opened the door for lithium ion batteries to take their place in large-scale applications such as plug-in hybrid vehicles. A high level of safety, significant cost reduction, and huge power generation are on the verge of being guaranteed for the most advanced energy storage system. The room-temperature phase diagram is essential to understand the facile electrode reaction of Li(x)FePo4 (0 < x < 1), but it has not been fully understood. Here, intermediate solid solution phases close to x = 0 and x = 1 have been isolated at room temperature. Size-dependent modification of the phase diagram, as well as the systematic variation of lattice parameters inside the solid-solution compositional domain closely related to the electrochemical redox potential, are demonstrated. These experimental results reveal that the excess capacity that has been observed above and below the two-phase aquilibrium potential is largely due to the bulk solid solution, and thus support the size-dependent miscibility gap model.
引用
收藏
页码:395 / 403
页数:9
相关论文
共 28 条
[1]   Kinetic study of the electrochemical FePO4 to LiFePO4 phase transition [J].
Allen, Jan L. ;
Jow, T. Richard ;
Wolfenstine, Jeffrey .
CHEMISTRY OF MATERIALS, 2007, 19 (08) :2108-2111
[2]   Electron microscopy study of the LiFePO4 to FePO4 phase transition [J].
Chen, GY ;
Song, XY ;
Richardson, TJ .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (06) :A295-A298
[3]   Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J].
Chen, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1184-A1189
[4]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[5]   The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 [J].
Delacourt, C ;
Poizot, P ;
Tarascon, JM ;
Masquelier, C .
NATURE MATERIALS, 2005, 4 (03) :254-260
[6]   Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J].
Delmas, C. ;
Maccario, M. ;
Croguennec, L. ;
Le Cras, F. ;
Weill, F. .
NATURE MATERIALS, 2008, 7 (08) :665-671
[7]   Phase diagram of LixFePO4 [J].
Dodd, JL ;
Yazami, R ;
Fultz, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (03) :A151-A155
[8]   Small polaron hopping in LixFePO4 solid solutions:: Coupled lithium-ion and electron mobility [J].
Ellis, Brian ;
Perry, Laura K. ;
Ryan, Dominic H. ;
Nazar, L. F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (35) :11416-11422
[9]   Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4 [J].
Gibot, Pierre ;
Casas-Cabanas, Montse ;
Laffont, Lydia ;
Levasseur, Stephane ;
Carlach, Philippe ;
Hamelet, Stephane ;
Tarascon, Jean-Marie ;
Masquelier, Christian .
NATURE MATERIALS, 2008, 7 (09) :741-747
[10]   Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J].
Huang, H ;
Yin, SC ;
Nazar, LF .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (10) :A170-A172