Finite times to equipartition in the thermodynamic limit

被引:59
作者
De Luca, J
Lichtenberg, AJ
Ruffo, S
机构
[1] Univ Fed Sao Carlos, Inst Fis, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Elect Res Lab, Berkeley, CA 94720 USA
[4] Univ Florence, Dipartimento Energet S Stecco, I-50139 Florence, Italy
[5] Ist Nazl Fis Nucl, I-50139 Florence, Italy
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 04期
关键词
D O I
10.1103/PhysRevE.60.3781
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the time scale T to equipartition in a 1D lattice of N masses coupled by quartic nonlinear (hard) springs (the Fermi-Pasta-Ulam beta model). We take the initial energy to be either in a single mode gamma or in a package of low-frequency modes centered at gamma and of width delta gamma, with both gamma and delta gamma proportional to N. These initial conditions both give, for finite energy densities E/N, a scaling in the thermodynamic limit (large N), of a finite time to equipartition which is inversely proportional to the central mode frequency times a power of the energy density (E/N). A theory of the scaling with (E/N) is presented and compared to the numerical results in the range 0.03 less than or equal to E/N less than or equal to 0.8. [S1063-651X(99)09110-2].
引用
收藏
页码:3781 / 3786
页数:6
相关论文
共 11 条
[1]   The Fermi-Pasta-Ulam problem revisited: Stochasticity thresholds in nonlinear Hamiltonian systems [J].
Casetti, L ;
CerrutiSola, M ;
Pettini, M ;
Cohen, EGD .
PHYSICAL REVIEW E, 1997, 55 (06) :6566-6574
[2]   Universal evolution to equipartition in oscillator chains [J].
DeLuca, J ;
Lichtenberg, AJ ;
Ruffo, S .
PHYSICAL REVIEW E, 1996, 54 (03) :2329-2333
[3]   ENERGY TRANSITIONS AND TIME SCALES TO EQUIPARTITION IN THE FERMI-PASTA-ULAM OSCILLATOR CHAIN [J].
DELUCA, J ;
LICHTENBERG, AJ ;
RUFFO, S .
PHYSICAL REVIEW E, 1995, 51 (04) :2877-2885
[4]   TIME-SCALE TO ERGODICITY IN THE FERMI-PASTA-ULAM SYSTEM [J].
DELUCA, J ;
LICHTENBERG, AJ ;
LIEBERMAN, MA .
CHAOS, 1995, 5 (01) :283-297
[5]  
GOEDDE CG, 1992, PHYSICA D, V59, P2000
[6]   EQUIPARTITION THRESHOLDS IN CHAINS OF ANHARMONIC-OSCILLATORS [J].
KANTZ, H ;
LIVI, R ;
RUFFO, S .
JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (1-2) :627-643
[7]   Relaxation of classical many-body Hamiltonians in one dimension [J].
Lepri, S .
PHYSICAL REVIEW E, 1998, 58 (06) :7165-7171
[8]   On the approach to equilibrium of a Hamiltonian chain of anharmonic oscillators [J].
Parisi, G .
EUROPHYSICS LETTERS, 1997, 40 (04) :357-362
[9]   Low-energy chaos in the Fermi-Pasta-Ulam problem [J].
Shepelyansky, DL .
NONLINEARITY, 1997, 10 (05) :1331-1338
[10]   Energy diffusion due to nonlinear perturbation on linear Hamiltonians [J].
Tsaur, GY ;
Wang, JP .
PHYSICAL REVIEW E, 1996, 54 (05) :4657-4666