Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant's response to drought

被引:283
作者
Davies, WJ [1 ]
Kudoyarova, G
Hartung, W
机构
[1] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YQ, England
[2] Russian Acad Sci, Ufa Sci Ctr, Ufa 450054, Russia
[3] Univ Lehrstuhl Bot 1, Julius Sachs Inst Biowissenschaften, D-97082 Wurzburg, Germany
关键词
long-distance drought signaling; abscisic acid; ethylene; cytokinin; pH; deficit irrigation; water use efficiency (WUE);
D O I
10.1007/s00344-005-0103-1
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In this article we review evidence for a variety of long-distance signaling pathways involving hormones and nutrient ions moving in the xylem sap. We argue that ABA has a central role to play, at least in root-to-shoot drought stress signaling and the regulation of functioning, growth, and development of plants in drying soil. We also stress the importance of changes in the pH of the leaf cell apoplast as influenced both by edaphic and climatic variation, as a regulator of shoot growth and functioning, and we show how changes in xylem and apoplastic pH can affect the way in which ABA regulates stomatal behavior and growth. The sensitivity to drought of the pH/ABA sensing and signaling mechanism is emphasized. This allows regulation of plant growth, development and functioning, and particularly shoot water status, as distinct from stress lesions in growth and other processes as a reaction to perturbations such as soil drying.
引用
收藏
页码:285 / 295
页数:11
相关论文
共 61 条
[1]   MICROBIAL-PRODUCTION OF PLANT HORMONES [J].
ARSHAD, M ;
FRANKENBERGER, WT .
PLANT AND SOIL, 1991, 133 (01) :1-8
[2]   pH-regulated leaf cell expansion in droughted plants is abscisic acid dependent [J].
Bacon, MA ;
Wilkinson, S ;
Davies, WJ .
PLANT PHYSIOLOGY, 1998, 118 (04) :1507-1515
[3]   Drought-induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field-grown maize (Zea mays L.) [J].
Bahrun, A ;
Jensen, CR ;
Asch, F ;
Mogensen, VO .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (367) :251-263
[4]   CHANGES IN THE CONTENTS OF FREE AND CONJUGATED ABSCISIC-ACID, PHASEIC ACID AND CYTOKININS IN XYLEM SAP OF DROUGHT-STRESSED SUNFLOWER PLANTS [J].
BANO, A ;
HANSEN, H ;
DORFFLING, K ;
HAHN, H .
PHYTOCHEMISTRY, 1994, 37 (02) :345-347
[5]   ABSCISIC-ACID AND CYTOKININS AS POSSIBLE ROOT-TO-SHOOT SIGNALS IN XYLEM SAP OF RICE PLANTS IN DRYING SOIL [J].
BANO, A ;
DORFFLING, K ;
BETTIN, D ;
HAHN, H .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1993, 20 (01) :109-115
[6]   ROOT TO SHOOT COMMUNICATION IN MAIZE PLANTS OF THE EFFECTS OF SOIL DRYING [J].
BLACKMAN, PG ;
DAVIES, WJ .
JOURNAL OF EXPERIMENTAL BOTANY, 1985, 36 (162) :39-48
[7]   Does engineering abscisic acid biosynthesis in Nicotiana plumbaginifolia modify stomatal response to drought? [J].
Borel, C ;
Frey, A ;
Marion-Poll, A ;
Tardieu, F ;
Simonneau, T .
PLANT CELL AND ENVIRONMENT, 2001, 24 (05) :477-489
[8]   Cytokinin biosynthesis and interconversion [J].
Chen, CM .
PHYSIOLOGIA PLANTARUM, 1997, 101 (04) :665-673
[9]   Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture [J].
Davies, WJ ;
Wilkinson, S ;
Loveys, B .
NEW PHYTOLOGIST, 2002, 153 (03) :449-460
[10]  
DAVIES WJ, 1991, ANNU REV PLANT PHYS, V42, P55, DOI 10.1146/annurev.pp.42.060191.000415