Mechanisms of the TRIF-induced interferon-stimulated response element and NF-κB activation and apoptosis pathways

被引:215
作者
Han, KJ
Su, XQ
Xu, LG
Bin, LH
Zhang, J
Shu, HB
机构
[1] Univ Colorado, Hlth Sci Ctr, Natl Jewish Med & Res Ctr, Dept Immunol, Denver, CO 80206 USA
[2] Peking Univ, Coll Life Sci, Dept Cell Biol & Genet, Beijing 100871, Peoples R China
关键词
D O I
10.1074/jbc.M311629200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Toll-like receptor-3 is critically involved in host defense against viruses through induction of type I interferons (IFNs). Recent studies suggest that a Toll/interleukin-1 receptor domain-containing adapter protein (TRIF) and two protein kinases (TANK-binding kinase-1 (TBK1) and IbetaB kinase (IKK)-epsilon) are critically involved in Toll-like receptor-3-mediated IFN-beta production through activation of IFN regulatory factor (IRF)-3 and IRF-7. In this study, we demonstrate that TRIF interacts with both IRF-7 and IRF-3. In addition to TBK1 and IKKepsilon, our results indicate that IKKbeta can also phosphorylate IRF-3 and activate the IFN-stimulated response element. TRIF-induced IRF-3 and IRF-7 activation was mediated by TBK1 and its downstream kinases IKKbeta and IKKepsilon. TRIF induced NF-kappaB activation through an IKKbeta- and tumor necrosis factor receptor-associated factor-6-dependent (but not TBK1- and IKKepsilon-dependent) pathway. In addition, TRIF also induced apoptosis through a RIP/FADD/caspase-8-dependent and mitochondrion-independent pathway. Furthermore, our results suggest that the TRIF-induced IFN-stimulated response element and NF-kappaB activation and apoptosis pathways are uncoupled and provide a molecular explanation for the divergent effects induced by the adapter protein TRIF.
引用
收藏
页码:15652 / 15661
页数:10
相关论文
共 37 条
[1]   Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function [J].
Adachi, O ;
Kawai, T ;
Takeda, K ;
Matsumoto, M ;
Tsutsui, H ;
Sakagami, M ;
Nakanishi, K ;
Akira, S .
IMMUNITY, 1998, 9 (01) :143-150
[2]   Toll-like receptors: critical proteins linking innate and acquired immunity [J].
Akira, S ;
Takeda, K ;
Kaisho, T .
NATURE IMMUNOLOGY, 2001, 2 (08) :675-680
[3]   Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3 [J].
Alexopoulou, L ;
Holt, AC ;
Medzhitov, R ;
Flavell, RA .
NATURE, 2001, 413 (6857) :732-738
[4]   TIRP, a novel Toll/interleukin-1 receptor (TIR) domain-containing adapter protein involved in TIR signaling [J].
Bin, LH ;
Xu, LG ;
Shu, HB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (27) :24526-24532
[5]   MyD88, an adapter protein involved in interleukin-1 signaling [J].
Burns, K ;
Martinon, F ;
Esslinger, C ;
Pahl, H ;
Schneider, P ;
Bodmer, JL ;
Di Marco, F ;
French, L ;
Tschopp, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (20) :12203-12209
[6]   TARF6 is a signal transducer for interleukin-1 [J].
Cao, ZD ;
Xiong, J ;
Takeuchi, M ;
Kurama, T ;
Goeddel, DV .
NATURE, 1996, 383 (6599) :443-446
[7]   A novel zinc finger protein interacts with receptor-interacting protein (RIP) and inhibits tumor necrosis factor (TNF)- and IL1-induced NF-κB activation [J].
Chen, DY ;
Li, XY ;
Zhai, ZH ;
Shu, HB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (18) :15985-15991
[8]   IKKε and TBK1 are essential components of the IRF3 signaling pathway [J].
Fitzgerald, KA ;
McWhirter, SM ;
Faia, KL ;
Rowe, DC ;
Latz, E ;
Golenbock, DT ;
Coyle, AJ ;
Liao, SM ;
Maniatis, T .
NATURE IMMUNOLOGY, 2003, 4 (05) :491-496
[9]   Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction [J].
Fitzgerald, KA ;
Palsson-McDermott, EM ;
Bowie, AG ;
Jefferies, CA ;
Mansell, AS ;
Brady, G ;
Brint, E ;
Dunne, A ;
Gray, P ;
Harte, MT ;
McMurray, D ;
Smith, DE ;
Sims, JE ;
Bird, TA ;
O'Neill, LAJ .
NATURE, 2001, 413 (6851) :78-83
[10]   The IRF-3 transcription factor mediates sendai virus-induced apoptosis [J].
Heylbroeck, C ;
Balachandran, S ;
Servant, MJ ;
DeLuca, C ;
Barber, GN ;
Lin, RT ;
Hiscott, J .
JOURNAL OF VIROLOGY, 2000, 74 (08) :3781-3792