Terminally differentiated human neurons survive and integrate following transplantation into the traumatically injured rat brain

被引:39
作者
Muir, JK
Raghupathi, R
Saatman, KE
Wilson, CA
Lee, VMY
Trojanowski, JQ
Philips, MF
McIntosh, TK
机构
[1] Univ Penn, Dept Neurosurg, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
关键词
fluid percussion; motor dysfunction; neuronal grafts; NT2N cells; traumatic brain injury;
D O I
10.1089/neu.1999.16.403
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
The present study evaluated the survival and integration of human postmitotic neurons (hNT) following transplantation into the traumatically injured rodent brain. Anesthetized male Sprague-Dawley rats (n = 47) were subjected to lateral fluid percussion brain injury of moderate severity (2.4-2.6 atm). Sham animals (n = 28) were surgically prepared, but did not receive brain injury. At 24 h following injury or sham surgery, the rats were re-anesthetized and similar to 100,000 hNT cells (freshly cultured or previously frozen) or vehicle were stereotactically injected into the ipsilateral cortex. Animals were examined for neuromotor function at 48 h, 7 days, and 14 days posttransplantation using a standard battery of motor tests. Animals were sacrificed at 2 weeks postinjury and viability of hNT grafts was assessed by Nissl staining and MOC-1 immunohistochemistry, which recognizes human neural cell adhesion molecules (NCAM) expressed on hNT cells. Transplanted hNT grafts remained viable in 83% of brain-injured animals at 2 weeks following transplantation of either fresh or frozen hNT cells. Glial fibrillary acidic protein (GFAP) immunohistochemistry revealed a marked increase in the number of reactive astrocytes following brain injury in both vehicle and hNT implanted animals. These reactive astrocytes appeared not to impede grafted cells from sending projections into host tissue. Despite the survival of transplanted cells in the traumatically injured brain, hNT cells had no significant effect on posttraumatic neurologic motor function during the acute posttraumatic period. Since hNT cells are transfectable, prolonged survival of these transplanted cells in the posttraumatic milieu suggests that grafted hNT cells may be a suitable means for delivery of therapeutic, exogenous proteins into the CNS for treatment of traumatic brain injury.
引用
收藏
页码:403 / 414
页数:12
相关论文
共 72 条
[1]   FETAL NEURAL GRAFTS AND REPAIR OF THE INJURED SPINAL-CORD [J].
ANDERSON, DK ;
HOWLAND, DR ;
REIER, PJ .
BRAIN PATHOLOGY, 1995, 5 (04) :451-457
[3]  
[Anonymous], LACTIC MICROFLORA PI
[4]   Activation of the complement cascade and increase of clusterin in the brain following a cortical contusion in the adult rat [J].
Bellander, BM ;
vonHolst, H ;
Fredman, P ;
Svensson, M .
JOURNAL OF NEUROSURGERY, 1996, 85 (03) :468-475
[5]  
Bjorklund A, 1992, Curr Opin Neurobiol, V2, P683, DOI 10.1016/0959-4388(92)90039-N
[6]   NEUROBIOLOGY - BETTER CELLS FOR BRAIN REPAIR [J].
BJORKLUND, A .
NATURE, 1993, 362 (6419) :414-415
[7]   Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats [J].
Borlongan, CV ;
Tajima, Y ;
Trojanowski, JQ ;
Lee, VMY ;
Sanberg, PR .
EXPERIMENTAL NEUROLOGY, 1998, 149 (02) :310-321
[8]   Chronic histopathological consequences of fluid-percussion brain injury in rats: Effects of post-traumatic hypothermia [J].
Bramlett, HM ;
Dietrich, WD ;
Green, EJ ;
Busto, R .
ACTA NEUROPATHOLOGICA, 1997, 93 (02) :190-199
[9]   Expression of endothelial adhesion molecules and recruitment of neutrophils after traumatic brain injury in rats [J].
Carlos, TM ;
Clark, RSB ;
FranicolaHiggins, D ;
Schiding, JK ;
Kochanekt, PM .
JOURNAL OF LEUKOCYTE BIOLOGY, 1997, 61 (03) :279-285
[10]   NEUTROPHIL ACCUMULATION AFTER TRAUMATIC BRAIN INJURY IN RATS - COMPARISON OF WEIGHT DROP AND CONTROLLED CORTICAL IMPACT MODELS [J].
CLARK, RSB ;
SCHIDING, JK ;
KACZOROWSKI, SL ;
MARION, DW ;
KOCHANEK, PM .
JOURNAL OF NEUROTRAUMA, 1994, 11 (05) :499-506