Generalized Gaussian sums Chern-Simons-Witten-Jones invariants of len-spaces

被引:10
作者
Li, BH [1 ]
Li, TJ [1 ]
机构
[1] BRANDEIS UNIV,DEPT MATH,WALTHAM,MA 02254
关键词
D O I
10.1142/S0218216596000151
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting from evaluating all Gaussian sums, we calculate (tau(r), tau greater than or equal to 2) (in the 4r-th cyclotomic fields) and {xi(r), r odd greater than or equal to 3} (in the r-th cyclotomic fields) for all lens spaces L(p,q). We prove that they are all algebraic integers and show that xi(r) determines the Dedekind sum s(q,p), and hence determines the generalized Gasson invariant of lens space. We conjecture these two properties hold for more general 3-manifold, and some evidences are discussed. Though the formulae are not simple, we are able to give necessary and sufficient conditions for lens spaces to have the same CSWJ invariants. Examples of lens spaces with the same invariants but different topological types are given. Some applications in number theory are also included.
引用
收藏
页码:183 / 224
页数:42
相关论文
共 30 条
[1]  
[Anonymous], THESIS U CHICAGO
[2]   THE DETERMINATION OF GAUSS SUMS [J].
BERNDT, BC ;
EVANS, RJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 5 (02) :107-129
[3]   3-MANIFOLD INVARIANTS DERIVED FROM THE KAUFFMAN BRACKET [J].
BLANCHET, C ;
HABEGGER, N ;
MASBAUM, G ;
VOGEL, P .
TOPOLOGY, 1992, 31 (04) :685-699
[4]   GENERALIZATIONS OF KERVAIRE INVARIANT [J].
BROWN, EH .
ANNALS OF MATHEMATICS, 1972, 95 (02) :368-+
[5]   COMPUTER CALCULATION OF WITTEN 3-MANIFOLD INVARIANT [J].
FREED, DS ;
GOMPF, RE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 141 (01) :79-117
[6]  
HICKERSON D, 1977, J REINE ANGEW MATH, V290, P113
[7]  
Hirzebruch F., 1971, ANN MATH STUD, V70, P3
[8]   CHERN-SIMONS-WITTEN INVARIANTS OF LENS SPACES AND TORUS BUNDLES, AND THE SEMICLASSICAL APPROXIMATION [J].
JEFFREY, LC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (03) :563-604
[9]  
KAUFFMAN L, 1991, KNOTS PHYSICS
[10]   THE 3-MANIFOLD INVARIANTS OF WITTEN AND RESHETIKHIN-TURAEV FOR SL(2, C) [J].
KIRBY, R ;
MELVIN, P .
INVENTIONES MATHEMATICAE, 1991, 105 (03) :473-545