Quantum scattering from arbitrary boundaries

被引:39
作者
daLuz, MGE [1 ]
LupuSax, AS [1 ]
Heller, EJ [1 ]
机构
[1] HARVARD SMITHSONIAN CTR ASTROPHYS,CAMBRIDGE,MA 02138
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 03期
关键词
D O I
10.1103/PhysRevE.56.2496
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a conceptually and numerically simple method for obtaining scattering eigenstates from arbitrary disconnected open or closed boundaries with very general boundary conditions. As a side effect of the derivation, a solution for partially penetrable walls is also found. As in the boundary integral Green-function method, an integral equation over the boundary results: however, our approach uses delta-function potentials which can have finite or infinite strength) to enforce boundary conditions and construct the governing equations: rather than Green's theorem.
引用
收藏
页码:2496 / 2507
页数:12
相关论文
共 21 条
[1]  
Arfken G. B., 1970, Mathematical Methods for Physicists, V2nd
[2]  
Beer G., 1992, INTRO FINITE ELEMENT
[3]   CONFINEMENT OF ELECTRONS TO QUANTUM CORRALS ON A METAL-SURFACE [J].
CROMMIE, MF ;
LUTZ, CP ;
EIGLER, DM .
SCIENCE, 1993, 262 (5131) :218-220
[4]  
CROMMIE MF, 1995, PHYSICA D, V83, P90
[5]  
DIETZ B, 1995, PHYS REV E, V15, P4222
[6]   SEMICLASSICAL QUANTIZATION OF CHAOTIC BILLIARDS - A SCATTERING-THEORY APPROACH [J].
DORON, E ;
SMILANSKY, U .
NONLINEARITY, 1992, 5 (05) :1055-1084
[7]  
GIPTSON GS, 1987, BOUNDARY ELEMENT FUN
[8]  
Goldberger ML., 1964, Collision Theory
[9]  
Goloskie R., 1996, Computers in Physics, V10, P477, DOI 10.1063/1.168580
[10]  
Gradshteyn I. S., 1994, TABLES INTEGRALS SER