Comparison of atomic-level simulation methods for computing thermal conductivity

被引:1389
作者
Schelling, PK [1 ]
Phillpot, SR
Keblinski, P
机构
[1] Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany
[2] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[3] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
来源
PHYSICAL REVIEW B | 2002年 / 65卷 / 14期
关键词
D O I
10.1103/PhysRevB.65.144306
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We compare the results of equilibrium and nonequilibrium methods to compute thermal conductivity. Using Sillinger-Weber silicon as a model system, we address issues related to nonlinear response, thermal equilibration, and statistical averaging. In addition, we present an analysis of finite-size effects and demonstrate how reliable results can be obtained when using nonequilibrium methods by extrapolation to an infinite system size. For the equilibrium Green-Kubo method, we show that results for the thermal conductivity are insensitive to the choice of the definition of local energy from the many-body part of the potential. Finally, we show that the results obtained by the equilibrium and nonequilibrium methods are consistent with each other and for the case of Si are in reasonable agreement with experimental results.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 32 条
[1]   Heat flow studies for large temperature gradients by molecular dynamics simulation [J].
Baranyai, A .
PHYSICAL REVIEW E, 1996, 54 (06) :6911-6917
[2]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[3]   PHASE-DIAGRAM OF SILICON BY MOLECULAR-DYNAMICS [J].
BROUGHTON, JQ ;
LI, XP .
PHYSICAL REVIEW B, 1987, 35 (17) :9120-9127
[4]   Thermal conductivity of isotopically enriched Si [J].
Capinski, WS ;
Maris, HJ ;
Bauser, E ;
Silier, I ;
AsenPalmer, M ;
Ruf, T ;
Cardona, M ;
Gmelin, E .
APPLIED PHYSICS LETTERS, 1997, 71 (15) :2109-2111
[5]   Ballistic energy transfer in dielectric Ar crystals [J].
Cenian, A ;
Gabriel, H .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (19) :4323-4339
[6]   Thermal conductivity of diamond and related materials from molecular dynamics simulations [J].
Che, JW ;
Çagin, T ;
Deng, WQ ;
Goddard, WA .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (16) :6888-6900
[7]   Thermal conductivity of carbon nanotubes [J].
Che, JW ;
Çagin, T ;
Goddard, WA .
NANOTECHNOLOGY, 2000, 11 (02) :65-69
[8]   COMPARISON OF SEMIEMPIRICAL POTENTIAL FUNCTIONS FOR SILICON AND GERMANIUM [J].
COOK, SJ ;
CLANCY, P .
PHYSICAL REVIEW B, 1993, 47 (13) :7686-7699
[9]   HOMOGENEOUS NEMD ALGORITHM FOR THERMAL-CONDUCTIVITY - APPLICATION OF NON-CANONICAL LINEAR RESPONSE THEORY [J].
EVANS, DJ .
PHYSICS LETTERS A, 1982, 91 (09) :457-460
[10]   THE CALCULATION OF THERMAL-CONDUCTIVITIES BY PERTURBED MOLECULAR-DYNAMICS SIMULATION [J].
GILLAN, MJ ;
DIXON, M .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (05) :869-878