Mechanism of iron transport to the site of heme synthesis inside yeast mitochondria

被引:139
作者
Lange, H
Kispal, G
Lill, R
机构
[1] Univ Marburg, Inst Zytobiol & Zytopathol, D-35033 Marburg, Germany
[2] Univ Pecs, Sch Med, Inst Biochem, H-7624 Pecs, Hungary
关键词
D O I
10.1074/jbc.274.27.18989
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The import of metals, iron in particular, into mitochondria is poorly understood. Iron in mitochondria is required for the biosynthesis of heme and various iron-sulfur proteins. We have developed an in vitro assay to follow the uptake of iron into isolated yeast mitochondria. By measuring the incorporation of iron into porphyrin by ferrochelatase in the matrix, we were able to define the mechanism of iron import. Iron uptake is driven energetically by a membrane potential across the inner membrane but does not require ATP, Only reduced iron is functional in generating heme, Iron cannot be preloaded in the mitochondrial matrix but rather has to be transported across the inner membrane simultaneously with the synthesis of hems, suggesting that ferrochelatase receives iron directly from the inner membrane, Transport of iron is inhibited by manganese but not by zinc, nickel, and copper ions, explaining why in vivo these ions are not incorporated into porphyrin. The inner membrane proteins Mmt1p and Mmt2p proposed to be involved in mitochondrial iron movement are not required for the supply of ferrochelatase with iron. Iron transport can be reconstituted efficiently in a membrane potential-dependent fashion in proteoliposomes that were formed from a detergent extract of mitochondria. Our biochemical analysis of iron import into yeast mitochondria provides the basis for the identification of components involved in transport.
引用
收藏
页码:18989 / 18996
页数:8
相关论文
共 46 条
[1]  
ABBAS A, 1993, J BIOL CHEM, V268, P8541
[2]  
[Anonymous], BIOSYNTHESIS HEME CO
[3]   Iron and copper transport in yeast and its relevance to human disease [J].
Askwith, C ;
Kaplan, J .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (04) :135-138
[4]   Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin [J].
Babcock, M ;
deSilva, D ;
Oaks, R ;
DavisKaplan, S ;
Jiralerspong, S ;
Montermini, L ;
Pandolfo, M ;
Kaplan, J .
SCIENCE, 1997, 276 (5319) :1709-1712
[5]   RECONSTITUTION OF THE TRANSPORT OF PROTEIN BETWEEN SUCCESSIVE COMPARTMENTS OF THE GOLGI MEASURED BY THE COUPLED INCORPORATION OF N-ACETYLGLUCOSAMINE [J].
BALCH, WE ;
DUNPHY, WG ;
BRAELL, WA ;
ROTHMAN, JE .
CELL, 1984, 39 (02) :405-416
[6]   Iron-sulfur clusters: Nature's modular, multipurpose structures [J].
Beinert, H ;
Holm, RH ;
Munck, E .
SCIENCE, 1997, 277 (5326) :653-659
[7]  
CAMADRO JM, 1988, J BIOL CHEM, V263, P11675
[8]   KINETIC-STUDIES OF FERROCHELATASE IN YEAST - ZINC OR IRON AS COMPETING SUBSTRATES [J].
CAMADRO, JM ;
LABBE, P .
BIOCHIMICA ET BIOPHYSICA ACTA, 1982, 707 (02) :280-288
[9]   Friedreich's ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion [J].
Campuzano, V ;
Montermini, L ;
Molto, MD ;
Pianese, L ;
Cossee, M ;
Cavalcanti, F ;
Monros, E ;
Rodius, F ;
Duclos, F ;
Monticelli, A ;
Zara, F ;
Canizares, J ;
Koutnikova, H ;
Bidichandani, SI ;
Gellera, C ;
Brice, A ;
Trouillas, P ;
DeMichele, G ;
Filla, A ;
DeFrutos, R ;
Palau, F ;
Patel, PI ;
DiDonato, S ;
Mandel, JL ;
Cocozza, S ;
Koenig, M ;
Pandolfo, M .
SCIENCE, 1996, 271 (5254) :1423-1427
[10]  
CEDERBAUM AI, 1972, J BIOL CHEM, V247, P4593