Nonlinear gradient denoising: Finding accurate extrema from inaccurate functional derivatives

被引:24
作者
Snyder, John C. [1 ,2 ]
Rupp, Matthias [3 ]
Mueller, Klaus-Robert [1 ,4 ]
Burke, Kieron [5 ,6 ]
机构
[1] Tech Univ Berlin, Machine Learning Grp, D-10587 Berlin, Germany
[2] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany
[3] Univ Basel, Inst Phys Chem, Dept Chem, CH-4056 Basel, Switzerland
[4] Korea Univ, Dept Brain & Cognit Engn, Seoul 136713, South Korea
[5] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[6] Univ Calif Irvine, Dept Phys, Irvine, CA 92697 USA
基金
新加坡国家研究基金会;
关键词
density functional theory; machine learning; nonlinear gradient denoising; orbital-free density functional theory;
D O I
10.1002/qua.24937
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A method for nonlinear optimization with machine learning (ML) models, called nonlinear gradient denoising (NLGD), is developed, and applied with ML approximations to the kinetic energy density functional in an orbital-free density functional theory. Due to systematically inaccurate gradients of ML models, in particular when the data is very high-dimensional, the optimization must be constrained to the data manifold. We use nonlinear kernel principal component analysis (PCA) to locally reconstruct the manifold, enabling a projected gradient descent along it. A thorough analysis of the method is given via a simple model, designed to clarify the concepts presented. Additionally, NLGD is compared with the local PCA method used in previous work. Our method is shown to be superior in cases when the data manifold is highly nonlinear and high dimensional. Further applications of the method in both density functional theory and ML are discussed. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:1102 / 1114
页数:13
相关论文
共 40 条
[2]   An object-oriented scripting interface to a legacy electronic structure code [J].
Bahn, SR ;
Jacobsen, KW .
COMPUTING IN SCIENCE & ENGINEERING, 2002, 4 (03) :56-66
[3]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[4]  
Braun ML, 2008, J MACH LEARN RES, V9, P1875
[5]  
Dreizler R M., 1990, Density Functional Theory: An Approach to the Quantum Many-Body Problem, DOI [10.1007/978-3-642-86105-5, DOI 10.1007/978-3-642-86105-5]
[6]  
Fiolhais C., 2003, A primer in density functional theory
[7]   Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies [J].
Hansen, Katja ;
Montavon, Gregoire ;
Biegler, Franziska ;
Fazli, Siamac ;
Rupp, Matthias ;
Scheffler, Matthias ;
von Lilienfeld, O. Anatole ;
Tkatchenko, Alexandre ;
Mueller, Klaus-Robert .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (08) :3404-3419
[8]  
Hastie T., 2009, The Elements of Statistical Learning: Data Mining, Inference, and Prediction
[9]   INHOMOGENEOUS ELECTRON-GAS [J].
RAJAGOPAL, AK ;
CALLAWAY, J .
PHYSICAL REVIEW B, 1973, 7 (05) :1912-1919
[10]  
Ivanciuc O., 2007, APPL SUPPORT VECTOR, V23, P291