Neuroprotective signal transduction: Relevance to stroke

被引:121
作者
Mattson, MP [1 ]
机构
[1] UNIV KENTUCKY, DEPT ANAT & NEUROBIOL, LEXINGTON, KY 40536 USA
关键词
amyloid precursor protein; antioxidant enzymes; basic fibroblast growth factor; calcium; cerebral ischemia; excitotoxicity; hippocampus; neurotrophic factors; platelet derived growth factor; protease nexin; reactive oxygen species; receptor tyrosine kinase; thrombin; tumor necrosis factor;
D O I
10.1016/S0149-7634(96)00010-3
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Studies of ischemic brain injury in cell culture, animal models, and humans have revealed inter- and intra-cellular signaling pathways that increase resistance to cell degeneration and death. Brain injury induces expression of many different growth factors and cytokines which can protect neurons against insults relevant to the pathogenesis of ischemic brain injury including excitotoxicity, hypoxia, hypoglycemia, acidosis, and pro-oxidants. Neuroprotective signal transduction pathways elicit changes that promote the maintenance of cellular ion homeostasis and/or suppress the accumulation of free radicals. For example: basic fibroblast growth factor suppresses expression of a glutamate receptor protein and induces antioxidant enzymes; tumor necrosis factor induces expression of a Ca2+-binding protein and Mn-superoxide dismutase; and secreted forms of beta-amyloid precursor protein hyperpolarize neurons by activating K+ channels. Transcriptional regulation involves activation of tyrosine phosphorylation cascades and NFkB. Interestingly, similar neuroprotective pathways can be activated by moderate levels of cell ''stress'' such as that induced by glutamate in cell culture or a brief period of cerebral ischemia in vivo. Novel rapid and delayed intracellular neuroprotective signaling mechanisms are being revealed, such as the regulation of Ca2+ influx by actin filaments and the induction of genes by Ca2+ and radicals. New therapeutic approaches arising from this research include low molecular weight lipophilic compounds that activate neurotrophic factor signaling pathways and agents that selectively depolymerize actin. (C) 1997 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:193 / 206
页数:14
相关论文
共 129 条
[1]   MOLECULAR AND BIOLOGICAL CHARACTERIZATION OF A MURINE LIGAND FOR CD40 [J].
ARMITAGE, RJ ;
FANSLOW, WC ;
STROCKBINE, L ;
SATO, TA ;
CLIFFORD, KN ;
MACDUFF, BM ;
ANDERSON, DM ;
GIMPEL, SD ;
DAVISSMITH, T ;
MALISZEWSKI, CR ;
CLARK, EA ;
SMITH, CA ;
GRABSTEIN, KH ;
COSMAN, D ;
SPRIGGS, MK .
NATURE, 1992, 357 (6373) :80-82
[2]  
Barger S. W., 1995, CNS NEUROTRANSMITTER, V2, P273
[3]   S100-BETA PROTECTS HIPPOCAMPAL-NEURONS FROM DAMAGE-INDUCED BY GLUCOSE DEPRIVATION [J].
BARGER, SW ;
VANELDIK, LJ ;
MATTSON, MP .
BRAIN RESEARCH, 1995, 677 (01) :167-170
[4]  
BARGER SW, 1995, J NEUROCHEM, V64, P2087
[5]   TUMOR-NECROSIS-FACTOR-ALPHA AND TUMOR-NECROSIS-FACTOR-BETA PROTECT NEURONS AGAINST AMYLOID BETA-PEPTIDE TOXICITY - EVIDENCE FOR INVOLVEMENT OF A KAPPA-B-BINDING FACTOR AND ATTENUATION OF PEROXIDE AND CA2+ ACCUMULATION [J].
BARGER, SW ;
HORSTER, D ;
FURUKAWA, K ;
GOODMAN, Y ;
KRIEGLSTEIN, J ;
MATTSON, MP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (20) :9328-9332
[6]  
Barger SW, 1996, MOL BRAIN RES, V40, P116
[7]   REDUCTION OF NEUROLOGICAL DAMAGE BY A PEPTIDE SEGMENT OF THE AMYLOID BETA/A4 PROTEIN-PRECURSOR IN A RABBIT SPINAL-CORD ISCHEMIA MODEL [J].
BOWES, MP ;
MASLIAH, E ;
OTERO, DAC ;
ZIVIN, JA ;
SAITOH, T .
EXPERIMENTAL NEUROLOGY, 1994, 129 (01) :112-119
[8]   Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors [J].
Bruce, AJ ;
Boling, W ;
Kindy, MS ;
Peschon, J ;
Kraemer, PJ ;
Carpenter, MK ;
Holtsberg, FW ;
Mattson, MP .
NATURE MEDICINE, 1996, 2 (07) :788-794
[9]   NEUROTROPHIN RECEPTORS - A WINDOW INTO NEURONAL DIFFERENTIATION [J].
CHAO, MV .
NEURON, 1992, 9 (04) :583-593
[10]   TUMOR NECROSIS FACTORS PROTECT NEURONS AGAINST METABOLIC EXCITOTOXIC INSULTS AND PROMOTE MAINTENANCE OF CALCIUM HOMEOSTASIS [J].
CHENG, B ;
CHRISTAKOS, S ;
MATTSON, MP .
NEURON, 1994, 12 (01) :139-153