Predicting the linear viscoelastic properties of monodisperse and polydisperse polystyrenes and polyethylenes

被引:52
作者
Pattamaprom, C
Larson, RG [1 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[2] Thammasat Univ, Dept Chem Engn, Pathum Thani 12121, Thailand
关键词
dual constraint model; double reptation model; polydispersity; polystyrene; polyethylene; hydrogenated polybutadiene;
D O I
10.1007/s003970100196
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
For linear homopolymers the linear viscoelastic predictions of the double reptation model are compared to those of a recent, more detailed model. the "dual constraint model" and to experimental data for monodisperse, bidisperse, and polydisperse polystyrene melts from several laboratories. A mapping procedure is developed that links the empirical parameter K of the double reptation model to the molecular parameter tau (e), of the dual constraint model. thereby allowing the parameter K to be related to molecular characteristics such as the monomeric friction coefficient zeta. Once K (or tau (e)) are determined from data for monodisperse polymers, the double reptation model predicts that for fixed weight-average molecular weight M-w the zero-shear viscosity eta (0) increases slightly with increasing polydispersity M-w/M-n for log normal distributions. while for the dual constraint model eta (0) is almost independent of M-w/M-n. Experimental data for polystyrenes show no increase (or even a slight decrease) in eta (0) with increasing M-w/M-n at fixed M-w, indicating a deficiency in the double reptation model. The dual constraint theory is also applied to hydrogenated polybutadienes and commercial high-density polyethylenes, where we believe it can be used to indicate the presence of long side branches. which are difficult to detect by other analytic methods.
引用
收藏
页码:516 / 532
页数:17
相关论文
共 48 条
[1]   ZERO-SHEAR VISCOSITY OF SOME ETHYL BRANCHED PARAFFINIC MODEL POLYMERS [J].
ARNETT, RL ;
THOMAS, CP .
JOURNAL OF PHYSICAL CHEMISTRY, 1980, 84 (06) :649-652
[2]   DYNAMIC DILUTION AND THE VISCOSITY OF STAR POLYMER MELTS [J].
BALL, RC ;
MCLEISH, TCB .
MACROMOLECULES, 1989, 22 (04) :1911-1913
[3]   PREDICTION OF RHEOLOGICAL BEHAVIOR OF BRANCHED POLYETHYLENE FROM MOLECULAR-STRUCTURE [J].
BERSTED, BH ;
SLEE, JD ;
RICHTER, CA .
JOURNAL OF APPLIED POLYMER SCIENCE, 1981, 26 (03) :1001-1014
[4]   THERMORHEOLOGICAL EFFECTS OF LONG-CHAIN BRANCHING IN ENTANGLED POLYMER MELTS [J].
CARELLA, JM ;
GOTRO, JT ;
GRAESSLEY, WW .
MACROMOLECULES, 1986, 19 (03) :659-667
[5]  
DESCLOIZEAUX J, 1988, EUROPHYS LETT, V5, P437
[6]  
DOI M, 1978, J CHEM SOC FARAD T 2, V74, P1789, DOI 10.1039/f29787401789
[7]  
DOI M, 1979, J CHEM SOC FARAD T 2, V75, P38, DOI 10.1039/f29797500038
[8]  
Doi M., 1986, The Theory of Polymer Dynamics
[9]  
Ferry D.J., 1980, Viscoelastic Properties of Polymers, V3e
[10]   CONNECTION BETWEEN POLYMER MOLECULAR-WEIGHT, DENSITY, CHAIN DIMENSIONS, AND MELT VISCOELASTIC PROPERTIES [J].
FETTERS, LJ ;
LOHSE, DJ ;
RICHTER, D ;
WITTEN, TA ;
ZIRKEL, A .
MACROMOLECULES, 1994, 27 (17) :4639-4647