Nanoparticle transport through mucosal barriers is often restricted owing to mucoadhesion and the highly viscoelastic nature of mucus gels, which may limit efficient drug and gene delivery. We formulated sub-200 nm particulates from poly(D,L-lactic-co-glycolic) acid (PLGA) and the cationic surfactant dimethyldioctadecylammonium bromide (DDAB). Subsequently, anionic DNA was condensed to the surface to obtain gene carriers with transfection rates 50-fold higher than those of naked DNA in vitro. Using the method of multiple particle tracking (MPT), we measured the transport rates of dozens of individual PLGA-DDAB/DNA nanoparticles in real time in reconstituted pig gastric mucus (PGM) that possessed physiologically relevant rheological. properties. The average transport rate of PLGA-DDAB/DNA nanoparticles was 10-fold higher than those of similar size polystyrene nanoparticles. Improved transport rates, stability in mucus, and ability to transfect cells make PLGA-DDAB/DNA nanoparticles candidates for mucosal DNA vaccines and gene therapy.