Risk maps for Antarctic krill under projected Southern Ocean acidification

被引:136
作者
Kawaguchi, S. [1 ,2 ]
Ishida, A. [3 ,4 ]
King, R. [1 ]
Raymond, B. [1 ,2 ]
Waller, N. [1 ]
Constable, A. [1 ,2 ]
Nicol, S. [5 ]
Wakita, M. [4 ,6 ]
Ishimatsu, A. [7 ]
机构
[1] Australian Antarctic Div, Kingston, Tas 7050, Australia
[2] Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas 7001, Australia
[3] Tokoha Univ, Dept Social Environm, Fuji, Shizuoka 4170801, Japan
[4] Japan Agcy Marine Earth Sci & Technol, Res Inst Global Change, Yokohama, Kanagawa 2360001, Japan
[5] Univ Tasmania, Inst Antarctic & Marine Studies, Sandy Bay, Tas 7005, Australia
[6] Japan Agcy Marine Earth Sci & Technol, Mutsu Inst Oceanog, Mutsu, Aomori 0350022, Japan
[7] Nagasaki Univ, Inst East China Sea Res, Nagasaki 8512213, Japan
关键词
EUPHAUSIA-SUPERBA; CLIMATE-CHANGE; TEMPERATURE; RESPONSES; SALINITY; CURRENTS; GROWTH;
D O I
10.1038/NCLIMATE1937
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Marine ecosystems of the Southern Ocean are particularly vulnerable to ocean acidification(1). Antarctic krill (Euphausia superba; hereafter krill) is the key pelagic species of the region and its largest fishery resource(2). There is therefore concern about the combined effects of climate change, ocean acidification and an expanding fishery on krill and ultimately, their dependent predators-whales, seals and penguins(3,4). However, little is known about the sensitivity of krill to ocean acidification. Juvenile and adult krill are already exposed to variable seawater carbonate chemistry because they occupy a range of habitats and migrate both vertically and horizontally on a daily and seasonal basis(5). Moreover, krill eggs sink from the surface to hatch at 700-1,000m (ref. 6), where the carbon dioxide partial pressure (p(CO2)) in sea water is already greater than it is in the atmosphere(7). Krill eggs sink passively and so cannot avoid these conditions. Here we describe the sensitivity of krill egg hatch rates to increased CO2, and present a circumpolar risk map of krill hatching success under projected p(CO2) levels. We find that important krill habitats of the Weddell Sea and the Haakon VII Sea to the east are likely to become high-risk areas for krill recruitment within a century. Furthermore, unless CO2 emissions are mitigated, the Southern Ocean krill population could collapse by 2300 with dire consequences for the entire ecosystem.
引用
收藏
页数:5
相关论文
共 31 条
[1]   COLD RESISTANCE AND METABOLIC RESPONSES TO SALINITY VARIATIONS IN THE AMPHIPOD EUSIRUS-ANTARCTICUS AND THE KRILL EUPHAUSIA-SUPERBA [J].
AARSET, AV ;
TORRES, JJ .
POLAR BIOLOGY, 1989, 9 (08) :491-497
[2]  
[Anonymous], 2002, NUTRIENTS
[3]   Oceanic circumpolar habitats of Antarctic krill [J].
Atkinson, A. ;
Siegel, V. ;
Pakhomov, E. A. ;
Rothery, P. ;
Loeb, V. ;
Ross, R. M. ;
Quetin, L. B. ;
Schmidt, K. ;
Fretwell, P. ;
Murphy, E. J. ;
Tarling, G. A. ;
Fleming, A. H. .
MARINE ECOLOGY PROGRESS SERIES, 2008, 362 :1-23
[4]   Long-term decline in krill stock and increase in salps within the Southern Ocean [J].
Atkinson, A ;
Siegel, V ;
Pakhomov, E ;
Rothery, P .
NATURE, 2004, 432 (7013) :100-103
[5]   Gone with the currents: lack of genetic differentiation at the circum-continental scale in the Antarctic krill Euphausia superba [J].
Bortolotto, Erica ;
Bucklin, Ann ;
Mezzavilla, Massimo ;
Zane, Lorenzo ;
Patarnello, Tomaso .
BMC GENETICS, 2011, 12
[6]   Comparative developmental physiology: An interdisciplinary convergence [J].
Burggren, W ;
Warburton, S .
ANNUAL REVIEW OF PHYSIOLOGY, 2005, 67 :203-223
[7]   The role of ocean transport in the uptake of anthropogenic CO2 [J].
Cao, L. ;
Eby, M. ;
Ridgwell, A. ;
Caldeira, K. ;
Archer, D. ;
Ishida, A. ;
Joos, F. ;
Matsumoto, K. ;
Mikolajewicz, U. ;
Mouchet, A. ;
Orr, J. C. ;
Plattner, G. -K. ;
Schlitzer, R. ;
Tokos, K. ;
Totterdell, I. ;
Tschumi, T. ;
Yamanaka, Y. ;
Yool, A. .
BIOGEOSCIENCES, 2009, 6 (03) :375-390
[8]   Ocean Acidification: The Other CO2 Problem [J].
Doney, Scott C. ;
Fabry, Victoria J. ;
Feely, Richard A. ;
Kleypas, Joan A. .
ANNUAL REVIEW OF MARINE SCIENCE, 2009, 1 :169-192
[9]   The effect of CO2 acidified sea water and reduced salinity on aspects of the embryonic development of the amphipod Echinogammarus marinus (Leach) [J].
Egilsdottir, Hronn ;
Spicer, John I. ;
Rundle, Simon D. .
MARINE POLLUTION BULLETIN, 2009, 58 (08) :1187-1191
[10]   Impact of climate change on Antarctic krill [J].
Flores, H. ;
Atkinson, A. ;
Kawaguchi, S. ;
Krafft, B. A. ;
Milinevsky, G. ;
Nicol, S. ;
Reiss, C. ;
Tarling, G. A. ;
Werner, R. ;
Rebolledo, E. Bravo ;
Cirelli, V. ;
Cuzin-Roudy, J. ;
Fielding, S. ;
Groeneveld, J. J. ;
Haraldsson, M. ;
Lombana, A. ;
Marschoff, E. ;
Meyer, B. ;
Pakhomov, E. A. ;
Rombola, E. ;
Schmidt, K. ;
Siegel, V. ;
Teschke, M. ;
Tonkes, H. ;
Toullec, J. Y. ;
Trathan, P. N. ;
Tremblay, N. ;
Van de Putte, A. P. ;
van Franeker, J. A. ;
Werner, T. .
MARINE ECOLOGY PROGRESS SERIES, 2012, 458 :1-19