A group I intron has recently been shown to have invaded mitochondrial cox1 genes by horizontal transfer many times during the broad course of angiosperm evolution. To investigate the frequency of acquisition of this intron within a more closely related group of plants, we determined its distribution and inferred its evolutionary history among 14 genera of the monocot family Araceae. Southern blot hybridizations showed that 6 of the 14 genera contain this intron in their cox1 genes. Nucleotide sequencing showed that these six introns are highly similar in sequence (97.7%-99.4% identity) and identical in length (966 nt). Phylogenetic evidence from parsimony reconstructions of intron distribution and phylogenetic analyses of intron sequences is consistent with a largely vertical history of intron transmission in the family; the simplest scenarios posit but one intron gain and two losses. Despite this, however, striking differences in lengths of exonic co-conversion tracts, coupled with the absence of co-conversion in intron-lacking taxa, indicate that the six intron-containing Araceae probably acquired their introns by at least three and quite possibly five separate horizontal transfers. The highly similar nature of these independently acquired introns implies a closely related set of donor organisms.