Unspecific hydrophobic stabilization of folding transition states

被引:66
作者
Viguera, AR
Vega, C
Serrano, L
机构
[1] European Mol Biol Lab, D-69012 Heidelberg, Germany
[2] Univ Basque Country, CSIC, Unidad Biofis, Bilbao 48080, Spain
关键词
D O I
10.1073/pnas.072387799
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Here we present a method for determining the inference of non-native conformations in the folding of a small domain, alpha-spectrin Src homology 3 domain. This method relies on the preservation of all native interactions after Tyr/Phe exchanges in solvent-exposed, contact-free positions. Minor changes in solvent exposure and free energy of the denatured ensemble are in agreement with the reverse hydrophobic effect, as the Tyr/Phe mutations slightly change the polypeptide hydrophilic/hydrophobic balance. Interestingly, more important Gibbs energy variations are observed in the transition state ensemble (TSE). Considering the small changes induced by the H/OH replacements, the observed energy variations in the TSE are rather notable, but of a magnitude that would remain undetected under regular mutations that alter the folded structure free energy. Hydrophobic residues outside of the folding nucleus contribute to the stability of the TSE in an unspecific nonlinear manner, producing a significant acceleration of both unfolding and refolding rates, with little effect on stability. These results suggest that sectors of the protein transiently reside in non-native areas of the landscape during folding, with implications in the reading of phi values from protein engineering experiments. Contrary to previous proposals, the principle that emerges is that non-native contacts, or conformations, could be beneficial in evolution and design of some fast folding proteins.
引用
收藏
页码:5349 / 5354
页数:6
相关论文
共 46 条
[1]   Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures [J].
Alm, E ;
Baker, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11305-11310
[2]   High populations of non-native structures in the denatured state are compatible with the formation of the native folded state [J].
Blanco, FJ ;
Serrano, L ;
Forman-Kay, JD .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 284 (04) :1153-1164
[3]   DESTABILIZING EFFECTS OF REPLACING A SURFACE LYSINE OF CYTOCHROME-C WITH AROMATIC-AMINO-ACIDS - IMPLICATIONS FOR THE DENATURED STATE [J].
BOWLER, BE ;
MAY, K ;
ZARAGOZA, T ;
YORK, P ;
DONG, AC ;
CAUGHEY, WS .
BIOCHEMISTRY, 1993, 32 (01) :183-190
[4]   FUNNELS, PATHWAYS, AND THE ENERGY LANDSCAPE OF PROTEIN-FOLDING - A SYNTHESIS [J].
BRYNGELSON, JD ;
ONUCHIC, JN ;
SOCCI, ND ;
WOLYNES, PG .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1995, 21 (03) :167-195
[5]   The effects of disulfide bonds on the denatured state of barnase [J].
Clarke, J ;
Hounslow, AM ;
Bond, CJ ;
Fersht, AR ;
Daggett, V .
PROTEIN SCIENCE, 2000, 9 (12) :2394-2404
[6]   Topological and energetic factors: What determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins [J].
Clementi, C ;
Nymeyer, H ;
Onuchic, JN .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 298 (05) :937-953
[7]  
Cordes MHJ, 1999, PROTEIN SCI, V8, P318
[8]   A tale of two secondary structure elements:: When a β-hairpin becomes an α-helix [J].
Cregut, D ;
Civera, C ;
Macias, MJ ;
Wallon, G ;
Serrano, L .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 292 (02) :389-401
[9]   ELECTROPHORETIC CHARACTERIZATION OF THE DENATURED STATES OF STAPHYLOCOCCAL NUCLEASE [J].
CREIGHTON, TE ;
SHORTLE, D .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 242 (05) :670-682
[10]   RESPONSE OF A PROTEIN-STRUCTURE TO CAVITY-CREATING MUTATIONS AND ITS RELATION TO THE HYDROPHOBIC EFFECT [J].
ERIKSSON, AE ;
BAASE, WA ;
ZHANG, XJ ;
HEINZ, DW ;
BLABER, M ;
BALDWIN, EP ;
MATTHEWS, BW .
SCIENCE, 1992, 255 (5041) :178-183