Functional domains of the Saccharomyces cerevisiae Mlh1p and Pms1p DNA mismatch repair proteins and their relevance to human hereditary nonpolyposis colorectal cancer-associated mutations

被引:115
作者
Pang, QS
Prolla, TA
Liskay, RM
机构
[1] OREGON HLTH SCI UNIV,DEPT MOL & MED GENET,L103,PORTLAND,OR 97201
[2] BAYLOR COLL MED,DEPT MOL & HUMAN GENET,HOUSTON,TX 77030
关键词
D O I
10.1128/MCB.17.8.4465
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The MutL protein is an essential component of the Escherichia coli methyl-directed mismatch repair system but has no known enzymatic function. In the yeast Saccharomyces cerevisiae, the MutL equivalent, an Mlh1p and Pms1p heterodimer, interacts with Msh2p bound to mismatch-containing DNA. Little is known of the functional domains of mlh1p and Pms1p. In this report, we define the Mlh1p and Pms1p domains required for Mlh1p-Pms1p interaction. The Mlh1p-interactive domain of Pms1p is comprised of 260 amino acids near the carboxyl terminus while the Pms1p-interactive domain of Mlh1p resides in the final 212 residues. The two domains are sufficient for Mlh1p-Pms1p interaction, as determined by the two-hybrid assay and by in vitro protein affinity chromatography. Deletions within the domains completely eliminated Mlh1p-Pms1p interaction. Using site-directed mutagenesis, we altered a number of highly conserved residues in the Mlh1p and Pms1p proteins, including some alterations that mimic germline mutations observed for human hereditary nonpolyposis colorectal cancer. Alterations either in the consensus MutL box located in the amino terminal portion of each protein or in the carboxyl-terminal homology motif of Mlh1p eliminated DNA mismatch repair function but had no effect on Mlh1p-Pms1p interaction. In addition, certain MLH1 and PMS1 mutant alleles caused a dominant negative mutator effect when overexpressed. We discuss the implications of these findings for the structural organization of the Mlh1p and Pms1p proteins and the importance of Mlh1p-Pms1p interaction.
引用
收藏
页码:4465 / 4473
页数:9
相关论文
共 58 条
[1]   hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6 [J].
Acharya, S ;
Wilson, T ;
Gradia, S ;
Kane, MF ;
Guerrette, S ;
Marsischky, GT ;
Kolodner, R ;
Fishel, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (24) :13629-13634
[2]  
ALANI E, 1994, GENETICS, V137, P19
[3]   Genetic and biochemical analysis of Msh2p-Msh6p: Role of ATP hydrolysis and Msh2p-Msh6p subunit interactions in mismatch base pair recognition [J].
Alani, E ;
Sokolsky, T ;
Studamire, B ;
Miret, JJ ;
Lahue, RS .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (05) :2436-2447
[4]  
Alani E, 1996, MOL CELL BIOL, V16, P5604
[5]   Dominant negative mutator mutations in the mutL gene of Escherichia coli [J].
Aronshtam, A ;
Marinus, MG .
NUCLEIC ACIDS RESEARCH, 1996, 24 (13) :2498-2504
[6]   Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over [J].
Baker, SM ;
Plug, AW ;
Prolla, TA ;
Bronner, CE ;
Harris, AC ;
Yao, X ;
Christie, DM ;
Monell, C ;
Arnheim, N ;
Bradley, A ;
Ashley, T ;
Liskay, RM .
NATURE GENETICS, 1996, 13 (03) :336-342
[7]   MALE-MICE DEFECTIVE IN THE DNA MISMATCH REPAIR GENE PMS2 EXHIBIT ABNORMAL CHROMOSOME SYNAPSIS IN MEIOSIS [J].
BAKER, SM ;
BRONNER, CE ;
ZHANG, L ;
PLUG, AW ;
ROBATZEK, M ;
WARREN, G ;
ELLIOTT, EA ;
YU, JA ;
ASHLEY, T ;
ARNHEIM, N ;
FLAVELL, RA ;
LISKAY, RM .
CELL, 1995, 82 (02) :309-319
[8]  
BARTEL P, 1993, BIOTECHNIQUES, V14, P920
[9]   An atypical topoisomerase II from archaea with implications for meiotic recombination [J].
Bergerat, A ;
deMassy, B ;
Gadelle, D ;
Varoutas, PC ;
Nicolas, A ;
Forterre, P .
NATURE, 1997, 386 (6623) :414-417
[10]   SPECIFICITY OF MISMATCH REPAIR FOLLOWING TRANSFORMATION OF SACCHAROMYCES-CEREVISIAE WITH HETERODUPLEX PLASMID DNA [J].
BISHOP, DK ;
ANDERSEN, J ;
KOLODNER, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (10) :3713-3717