Existence and uniqueness of a solution for a parabolic quasilinear problem for linear growth functionals with L1 data

被引:38
作者
Andreu-Vaillo, F [1 ]
Caselles, V [1 ]
Mazón, JM [1 ]
机构
[1] Univ Pompeu Fabra, Barcelona 08003, Spain
关键词
D O I
10.1007/s002080100270
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new concept of solution for the Dirichlet problem for quasilinear parabolic equations in divergent form for which the energy functional has linear growth. Using Kruzhkov's method of doubling variables both in space and time we prove uniqueness and a comparison principle in L-1 for these solutions. To prove the existence we use the nonlinear semigroup theory.
引用
收藏
页码:139 / 206
页数:68
相关论文
共 35 条
[1]  
Ambrosio L., 2000, FUNCTIONS BOUNDED VA
[2]   Existence and uniqueness for a degenerate parabolic equation with L1-data [J].
Andreu, F ;
Mazón, JM ;
De León, SS ;
Toledo, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (01) :285-306
[3]   The Dirichlet problem for the total variation flow [J].
Andreu, F ;
Ballester, C ;
Caselles, V ;
Mazón, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (02) :347-403
[4]  
ANDREU F, IN PRESS REV MAT IBE
[5]  
ANDREU F, 1997, ADV MATH SCI APPL, V7, P183
[6]  
Andreu F., 2001, DIFFER INTEGRAL EQU, V14, P321
[7]   BV SOLUTIONS OF QUASI-LINEAR PDES IN DIVERGENCE FORM [J].
ANZELLOTTI, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1987, 12 (01) :77-122
[8]   THE EULER EQUATION FOR FUNCTIONALS WITH LINEAR GROWTH [J].
ANZELLOTTI, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 290 (02) :483-501
[9]  
Anzellotti G., 1983, ANN MAT PUR APPL, V4, P293
[10]  
BENILAN P, 1991, LECT NOTES PURE APPL, V135, P41