The Arabidopsis homolog of yeast TAP42 and mammalian α4 binds to the catalytic subunit of protein phosphatase 2A and is induced by chilling

被引:41
作者
Harris, DM [1 ]
Myrick, TL [1 ]
Rundle, SJ [1 ]
机构
[1] Western Carolina Univ, Dept Biol, Cullowhee, NC 28723 USA
关键词
D O I
10.1104/pp.121.2.609
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Type 2A serine/threonine protein phosphatases (PP2A) have been implicated as important mediators of a number of plant growth and developmental processes. In an effort to identify plant PP2A substrates and/or regulators, we performed a yeast two-hybrid screen using an Arabidopsis PP2A catalytic subunit cDNA as bait. All true positives identified by this screen were derived from the same gene, which we have named TAP46 (2A phosphatase associated protein of 46 kD). The TAP46 gene appears to be a single-copy gene and is expressed in all Arabidopsis organs. Transcripts derived from this gene are induced by chilling treatment but not by heat or anaerobic stress. Immunoprecipitation assays using antibodies generated to a peptide spanning amino acids 356 to 366 of TAP46 indicate that TAP46 is associated with a type 2A protein phosphatase in vivo. A search of the database identified TAP46 as a homolog of Saccharomyces cerevisiae TAP42 and mammalian alpha 4. These two proteins are known to bind to the catalytic subunit of PP2A and to function in the target-of-rapamycin signaling pathway. Our results identify TAP46 as a plant PP2A-associated protein, with a possible function in the chilling response, and suggest that a target-of-rapamycin-like signaling pathway may exist in plants.
引用
收藏
页码:609 / 617
页数:9
相关论文
共 38 条
[1]   The catalytic subunit of protein phosphatase 2A associates with the translation termination factor eRF1 [J].
Andjelkovic, N ;
Zolnierowicz, S ;
VanHoof, C ;
Goris, J ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (24) :7156-7167
[2]  
Bartel P, 1993, CELLULAR INTERACTION, P153
[3]   MOLECULAR-CLONING AND CHARACTERIZATION OF GENES RELATED TO CHILLING TOLERANCE IN RICE [J].
BINH, LT ;
OONO, K .
PLANT PHYSIOLOGY, 1992, 99 (03) :1146-1150
[4]   A novel plant peptidyl-prolyl-cis-trans-isomerase (PPIase): cDNA cloning, structural analysis, enzymatic activity and expression [J].
Blecher, O ;
Erel, N ;
Callebaut, I ;
Aviezer, K ;
Breiman, A .
PLANT MOLECULAR BIOLOGY, 1996, 32 (03) :493-504
[5]   Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin [J].
Brunn, GJ ;
Hudson, CC ;
Sekulic, A ;
Williams, JM ;
Hosoi, H ;
Houghton, PJ ;
Lawrence, JC ;
Abraham, RT .
SCIENCE, 1997, 277 (5322) :99-101
[6]   RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1 [J].
Burnett, PE ;
Barrow, RK ;
Cohen, NA ;
Snyder, SH ;
Sabatini, DM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (04) :1432-1437
[7]   α4 associates with protein phosphatases 2A, 4, and 6 [J].
Chen, J ;
Peterson, RT ;
Schreiber, SL .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 247 (03) :827-832
[8]   Reversible phosphorylation of Bcl2 following interleukin 3 or bryostatin 1 is mediated by direct interaction with protein phosphatase 2A [J].
Deng, XM ;
Ito, T ;
Carr, B ;
Mumby, M ;
May, WS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (51) :34157-34163
[9]   Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases [J].
DiComo, CJ ;
Arndt, KT .
GENES & DEVELOPMENT, 1996, 10 (15) :1904-1916
[10]   CDNA SEQUENCE-ANALYSIS AND EXPRESSION OF 2 COLD-REGULATED GENES OF ARABIDOPSIS-THALIANA [J].
GILMOUR, SJ ;
ARTUS, NN ;
THOMASHOW, MF .
PLANT MOLECULAR BIOLOGY, 1992, 18 (01) :13-21