Concurrence of mixed bipartite quantum states in arbitrary dimensions

被引:226
作者
Mintert, F
Kus, M
Buchleitner, A
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Polish Acad Sci, Ctr Fizyki Teoret, PL-02668 Warsaw, Poland
关键词
Density matrix - Hilbert space - Quantum computation - Quantum physics - Quantum states;
D O I
10.1103/PhysRevLett.92.167902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a lower bound for the concurrence of mixed bipartite quantum states, valid in arbitrary dimensions. As a corollary, a weaker, purely algebraic estimate is found, which detects mixed entangled states with a positive partial transpose.
引用
收藏
页码:167902 / 1
页数:4
相关论文
共 17 条
[1]   Variational characterizations of separability and entanglement of formation [J].
Audenaert, K ;
Verstraete, F ;
De Moor, B .
PHYSICAL REVIEW A, 2001, 64 (05) :13
[2]   Concurrence in arbitrary dimensions [J].
Badziag, P ;
Deuar, P ;
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
JOURNAL OF MODERN OPTICS, 2002, 49 (08) :1289-1297
[3]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[4]   Characterizing entanglement [J].
Bruss, D .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) :4237-4251
[5]   Distinguishing separable and entangled states [J].
Doherty, AC ;
Parrilo, PA ;
Spedalieri, FM .
PHYSICAL REVIEW LETTERS, 2002, 88 (18) :1879041-1879044
[6]   Separability criterion and inseparable mixed states with positive partial transposition [J].
Horodecki, P .
PHYSICS LETTERS A, 1997, 232 (05) :333-339
[7]   A COMPLETE CLASSIFICATION OF QUANTUM ENSEMBLES HAVING A GIVEN DENSITY-MATRIX [J].
HUGHSTON, LP ;
JOZSA, R ;
WOOTTERS, WK .
PHYSICS LETTERS A, 1993, 183 (01) :14-18
[8]  
MINTERTF, 2004, THESIS L MAXIMILIANS
[9]  
Nielsen Michael A, 2002, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[10]   Separability criterion for density matrices [J].
Peres, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (08) :1413-1415