A general statistical analysis for fMRI data

被引:910
作者
Worsley, KJ [1 ]
Liao, CH
Aston, J
Petre, V
Duncan, GH
Morales, F
Evans, AC
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2T5, Canada
[2] McGill Univ, Montreal Neurol Inst, Montreal, PQ H3A 2T5, Canada
[3] Univ London Imperial Coll Sci Technol & Med, London, England
[4] Univ Montreal, Ctr Rech Sci Neurol, Montreal, PQ H3C 3J7, Canada
[5] Cuban Neurosci Ctr, Havana, Cuba
关键词
fMRI; hemodynamic response function; linear regression; random effects; EM algorithm; bias reduction;
D O I
10.1006/nimg.2001.0933
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We propose a method for the statistical analysis of fMRI data that seeks a compromise between efficiency, generality, validity, simplicity, and execution speed. The main differences between this analysis and previous ones are: a simple bias reduction and regularization for voxel-wise autoregressive model parameters; the combination of effects and their estimated standard deviations across different runs/sessions/subjects via a hierarchical random effects analysis using the EM algorithm; overcoming the problem of a small number of runs/session/subjects using a regularized variance ratio to increase the degrees of freedom. (C) 2002 Elsevier Science.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 23 条
[1]  
Adler R. J., 1981, GEOMETRY RANDOM FIEL
[2]  
Andrade A, 2001, HUM BRAIN MAPP, V12, P79, DOI 10.1002/1097-0193(200102)12:2<79::AID-HBM1005>3.0.CO
[3]  
2-I
[4]   Statistical methods of estimation and inference for functional MR image analysis [J].
Bullmore, E ;
Brammer, M ;
Williams, SCR ;
Rabehesketh, S ;
Janot, N ;
David, A ;
Mellers, J ;
Howard, R ;
Sham, P .
MAGNETIC RESONANCE IN MEDICINE, 1996, 35 (02) :261-277
[5]   The size of the connected components of excursion sets of χ2, t and F fields [J].
Cao, J .
ADVANCES IN APPLIED PROBABILITY, 1999, 31 (03) :579-595
[6]  
CHEN HI, 2000, UNPUB DIFFERENTIATIN
[7]  
Friston K., 1995, HUMAN BRAIN MAPPING, V2, P189, DOI [DOI 10.1002/HBM.460020402, 10.1002/hbm.460020402]
[8]   To smooth or not to smooth? Bias and efficiency in fMRI time-series analysis [J].
Friston, KJ ;
Josephs, O ;
Zarahn, E ;
Holmes, AP ;
Rouquette, S ;
Poline, JB .
NEUROIMAGE, 2000, 12 (02) :196-208
[9]   Event-related fMRI: Characterizing differential responses [J].
Friston, KJ ;
Fletcher, P ;
Josephs, O ;
Holmes, A ;
Rugg, MD ;
Turner, R .
NEUROIMAGE, 1998, 7 (01) :30-40
[10]   Deconvolution of impulse response in event-related BOLD fMRI [J].
Glover, GH .
NEUROIMAGE, 1999, 9 (04) :416-429