Generation of reactive oxygen species by the mitochondrial electron transport chain

被引:977
作者
Liu, YB
Fiskum, G
Schubert, D
机构
[1] Salk Inst Biol Studies, Cellular Neurobiol Lab, La Jolla, CA 92037 USA
[2] Univ Maryland, Sch Med, Dept Anesthesiol, Baltimore, MD 21201 USA
关键词
aging; electron transport chain; mitochondria; Parkinson's disease; reactive oxygen species;
D O I
10.1046/j.0022-3042.2002.00744.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Generation of reactive oxygen species (ROS) by the mitochondrial electron transport chain (ETC), which is composed of four multiprotein complexes named complex I-IV, is believed to be important in the aging process and in the pathogenesis of neurodegenerative diseases such as Parkinson's disease. Previous studies have identified the ubiquinone of complex III and an unknown component of complex I as the major sites of ROS generation. Here we show that the physiologically relevant ROS generation supported by the complex 11 substrate succinate occurs at the flavin mononucleotide group (FMN) of complex I through reversed electron transfer, not at the ubiquinone of complex III as commonly believed. Indirect evidence indicates that the unknown ROS-generating site within complex I is also likely to be the FMN group. It is therefore suggested that the major physiologically and pathologically relevant ROS-generating site in mitochondria is limited to the FMN group of complex I. These new insights clarify an elusive target for intervening mitochondrial ROS-related processes or diseases.
引用
收藏
页码:780 / 787
页数:8
相关论文
共 32 条
[1]   Chronic systemic pesticide exposure reproduces features of Parkinson's disease [J].
Betarbet, R ;
Sherer, TB ;
MacKenzie, G ;
Garcia-Osuna, M ;
Panov, AV ;
Greenamyre, JT .
NATURE NEUROSCIENCE, 2000, 3 (12) :1301-1306
[2]   MITOCHONDRIAL PRODUCTION OF SUPEROXIDE ANIONS AND ITS RELATIONSHIP TO ANTIMYCIN INSENSITIVE RESPIRATION [J].
BOVERIS, A ;
CADENAS, E .
FEBS LETTERS, 1975, 54 (03) :311-314
[3]  
BOVERIS A, 1984, METHOD ENZYMOL, V105, P429
[4]   CELLULAR PRODUCTION OF HYDROGEN-PEROXIDE [J].
BOVERIS, A ;
CHANCE, B ;
OSHINO, N .
BIOCHEMICAL JOURNAL, 1972, 128 (03) :617-&
[5]   PRODUCTION OF SUPEROXIDE RADICALS AND HYDROGEN-PEROXIDE BY NADH-UBIQUINONE REDUCTASE AND UBIQUINOL-CYTOCHROME C REDUCTASE FROM BEEF-HEART MITOCHONDRIA [J].
CADENAS, E ;
BOVERIS, A ;
RAGAN, CI ;
STOPPANI, AOM .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1977, 180 (02) :248-257
[6]  
CHANCE B, 1961, J BIOL CHEM, V236, P1534
[7]   HYDROPEROXIDE METABOLISM IN MAMMALIAN ORGANS [J].
CHANCE, B ;
SIES, H ;
BOVERIS, A .
PHYSIOLOGICAL REVIEWS, 1979, 59 (03) :527-605
[8]  
CHANCE B, 1961, J BIOL CHEM, V236, P1562
[9]   GENERATION OF HYDROGEN-PEROXIDE BY BRAIN MITOCHONDRIA - THE EFFECT OF REOXYGENATION FOLLOWING POSTDECAPITATIVE ISCHEMIA [J].
CINO, M ;
DELMAESTRO, RF .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1989, 269 (02) :623-638
[10]   THE EFFECT OF THE INHIBITOR DIPHENYLENE IODONIUM ON THE SUPEROXIDE-GENERATING SYSTEM OF NEUTROPHILS - SPECIFIC LABELING OF A COMPONENT POLYPEPTIDE OF THE OXIDASE [J].
CROSS, AR ;
JONES, OTG .
BIOCHEMICAL JOURNAL, 1986, 237 (01) :111-116