Conditioning geostatistical operations to nonlinear volume averages

被引:22
作者
Journel, AG [1 ]
机构
[1] Stanford Univ, Geol & Environm Sci Dept, Stanford, CA 94305 USA
来源
MATHEMATICAL GEOLOGY | 1999年 / 31卷 / 08期
关键词
cokriging; exactitude; power transform; stochastic simulation;
D O I
10.1023/A:1007551529317
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The all-important process of data integration calls for algorithms that can handle secondary data often defined as nonlinear averages of the primary (hard) data over specific areas or volumes. it is suggested to approximate these nonlinear averages by linear averages of a nonlinear transform of the primary variable Kriging of such nonlinear transforms followed by the inverse transform, allows exact reproduction of all original data, both of point support and nonlinear volume averages. In a simulation mode, the previous cokriging provides the mean and variance of a conditional distribution from which to draw a simulated value, which is then backtransformed into a simulated value of the primary variable. The nonlinear averaged data values are then reproduced exactly. The direct sequential simulation algorithm adopted does not call for using any Gaussian distribution.
引用
收藏
页码:931 / 953
页数:23
相关论文
共 19 条
[1]  
ABRAHAMSEN P, 1996, GEOSTATISTICS WOLLON, V1, P489
[2]  
[Anonymous], 1984, GEOSTATISTICS NATURA
[3]  
BEHRENS R, 1996, ANN SPE M DENV CO OC
[4]   Using non-Gaussian distributions in geostatistical simulations [J].
Bourgault, G .
MATHEMATICAL GEOLOGY, 1997, 29 (03) :315-334
[5]  
DEUTSCH C, 1989, SPE FORMATION EV SEP, P343
[6]  
Deutsch CV, 1997, GSLIB GEOSTATISTICAL
[7]   2 METHODS WITH DIFFERENT OBJECTIVES - SPLINES AND KRIGING [J].
DUBRULE, O .
JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR MATHEMATICAL GEOLOGY, 1983, 15 (02) :245-257
[8]  
GOOVAERTS P, 1997, GEOSTATISTICS NATURA
[9]  
HAAS A, 1997, GEOSTATISTICS WOLLON, V1, P501
[10]  
Horne R.N., 1995, Modern Well Test Analysis