Axon navigation in the mammalian primary olfactory pathway: Where to next?

被引:51
作者
Key, B [1 ]
St John, J
机构
[1] Univ Queensland, Sch Biomed Sci, Dept Anat & Dev Biol, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Ctr Funct & Appl Genom, Brisbane, Qld 4072, Australia
关键词
D O I
10.1093/chemse/27.3.245
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
The process of establishing long-range neuronal connections can be divided into at least three discrete steps. First, axons need to be stimulated to grow and this growth must be towards appropriate targets. Second, after arriving at their target, axons need to be directed to their topographically appropriate position and in some cases, such as in cortical structures, they must grow radially to reach the correct laminar layer Third, axons then arborize and form synaptic connections with only a defined subpopulation of potential post-synaptic partners. Attempts to understand these mechanisms in the visual system have been ongoing since pioneer studies in the 1940s highlighted the specificity of neuronal connections in the retino-tectal pathway. These classical systems-based approaches culminated in the 1990s with the discovery that Eph-ephrin repulsive interactions were involved in topographical mapping. In marked contrast, it was the cloning of the odorant receptor family that quickly led to a better understanding of axon targeting in the olfactory system. The last 10 years have seen the olfactory pathway rise in prominence as a model system for axon guidance. Once considered to be experimentally intractable, it is now providing a wealth of information on all aspects of axon guidance and targeting with implications not only for our understanding of these mechanisms in the olfactory system but also in other regions of the nervous system.
引用
收藏
页码:245 / 260
页数:16
相关论文
共 135 条
[1]   Identification of a novel neural cell adhesion molecule-related gene with a potential role in selective axonal projection [J].
Alenius, M ;
Bohm, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (42) :26083-26086
[2]  
ALLEN WK, 1985, J NEUROSCI, V5, P284
[3]   MODEL OF FOREBRAIN REGIONALIZATION BASED ON SPATIOTEMPORAL PATTERNS OF POU-III HOMEOBOX GENE-EXPRESSION, BIRTH-DATES, AND MORPHOLOGICAL FEATURES [J].
ALVAREZBOLADO, G ;
ROSENFELD, MG ;
SWANSON, LW .
JOURNAL OF COMPARATIVE NEUROLOGY, 1995, 355 (02) :237-295
[4]  
Anchan RM, 1997, J COMP NEUROL, V379, P171
[5]   Slit2-mediated chemorepulsion and collapse of developing forebrain axons [J].
Ba-Charvet, KTN ;
Brose, K ;
Marillat, V ;
Kidd, T ;
Goodman, CS ;
Tessier-Lavigne, M ;
Sotelo, C ;
Chédotal, A .
NEURON, 1999, 22 (03) :463-473
[6]  
Bailey MS, 1999, J COMP NEUROL, V415, P423
[7]   NFI in the development of the olfactory neuroepithelium and the regulation of olfactory marker protein gene expression. [J].
Behrens, M ;
Venkatraman, G ;
Gronostajski, RM ;
Reed, RR ;
Margolis, FL .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2000, 12 (04) :1372-1384
[8]   Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases in the developing retinotectal system [J].
Braisted, JE ;
McLaughlin, T ;
Wang, HU ;
Friedman, GC ;
Anderson, DJ ;
OLeary, DDM .
DEVELOPMENTAL BIOLOGY, 1997, 191 (01) :14-28
[9]   A NOVEL MULTIGENE FAMILY MAY ENCODE ODORANT RECEPTORS - A MOLECULAR-BASIS FOR ODOR RECOGNITION [J].
BUCK, L ;
AXEL, R .
CELL, 1991, 65 (01) :175-187
[10]   An olfactory sensory map develops in the absence of normal projection neurons or GABAergic interneurons [J].
Bulfone, A ;
Wang, F ;
Hevner, R ;
Anderson, S ;
Cutforth, T ;
Chen, S ;
Meneses, J ;
Pedersen, R ;
Axel, R ;
Rubenstein, JLR .
NEURON, 1998, 21 (06) :1273-1282