Starvation-induced expression of autophagy-related genes in Arabidopsis

被引:154
作者
Rose, TL [1 ]
Bonneau, L [1 ]
Der, C [1 ]
Marty-Mazars, D [1 ]
Marty, F [1 ]
机构
[1] Univ Bourgogne, CNRS, INRA, UMR UB Plante Microbe Environm, F-21078 Dijon, France
关键词
Atg8; autophagosome; stress; sucrose; vacuole;
D O I
10.1042/BC20040516
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background information. Autophagy is a catabolic process for degradation of cytoplasmic components in the vacuolar apparatus. A genome-wide survey recently showed evolutionary conservation among autophagy genes in yeast, mammals and plants. To elucidate the molecular and subcellular machinery responsible for the sequestration and subsequent digestion of intracellular material in plants, we utilized a combination of morphological and molecular methods (confocal laser-scanning microscopy, transmission electron microscopy and real-time PCR respectively). Results. Autophagy in Arabidopsis thaliana suspension-cultured cells was induced by carbon starvation, which triggered an immediate arrest of cell growth together with a rapid degradation of cellular proteins. We followed the onset of these responses and, in this report, provide a clear functional classification for the highly polymorphic autophagosomes by which the cell sequesters and degrades a portion of its own cytoplasm. Quantification of autophagy-related structures shows that cells respond to the stress signal by a rapid and massive, but transient burst of autophagic activity, which adapts to the stress signal. We also monitored the real-time expressions of AtATG3, AtATG4a, AtATG4b, AtATG7 and AtATG8a-AtATG8i genes, which are orthologues of yeast genes involved in the Atg8 ubiquitination-like conjugation pathway and are linked to autophagosome formation. We show that these autophagy-related genes are transiently up-regulated in a co-ordinated manner at the onset of starvation. Conclusions. Sucrose starvation induces autophagy and up-regulates orthologues of the yeast Atg8 conjugation pathway genes in Arabidopsis cultured cells. The AtATG3, AtATG4a, AtATG4b, AtATG7 and AtATG8a-AtATG8i genes are expressed in successive waves that parallel the biochemical and cytological remodelling that takes place. These genes thus serve as early markers for autophagy in plants.
引用
收藏
页码:53 / 67
页数:15
相关论文
共 66 条
[1]  
AMRANI AE, 1994, PLANT PHYSIOL, V106, P1555
[2]   Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: Control by the supply of mitochondria with respiratory substrates [J].
Aubert, S ;
Gout, E ;
Bligny, R ;
MartyMazars, D ;
Barrieu, F ;
Alabouvette, J ;
Marty, F ;
Douce, R .
JOURNAL OF CELL BIOLOGY, 1996, 133 (06) :1251-1263
[3]  
AXELOS M, 1992, PLANT PHYSIOL BIOCH, V30, P123
[4]   Gibberellin signaling [J].
Bethke, PC ;
Jones, RL .
CURRENT OPINION IN PLANT BIOLOGY, 1998, 1 (05) :440-446
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   Induction of a carbon-starvation-related proteolysis in whole maize plants submitted to light/dark cycles and to extended darkness [J].
Brouquisse, R ;
Gaudillère, JP ;
Raymond, P .
PLANT PHYSIOLOGY, 1998, 117 (04) :1281-1291
[7]  
BROUQUISSE R, 1992, PLANTA, V188, P384, DOI 10.1007/BF00192806
[8]   Regulation of protein degradation and protease expression by mannose in maize root tips. Pi sequestration by mannose may hinder the study of its signaling properties [J].
Brouquisse, R ;
Evrard, A ;
Rolin, D ;
Raymond, P ;
Roby, C .
PLANT PHYSIOLOGY, 2001, 125 (03) :1485-1498
[9]   EXPRESSION OF ALPHA-AMYLASES, CARBOHYDRATE-METABOLISM, AND AUTOPHAGY IN CULTURED RICE CELLS IS COORDINATELY REGULATED BY SUGAR NUTRIENT [J].
CHEN, MH ;
LIU, LF ;
CHEN, YR ;
WU, HK ;
YU, SM .
PLANT JOURNAL, 1994, 6 (05) :625-636
[10]   Metabolic regulation of asparagine synthetase gene expression in maize (Zea mays L) root tips [J].
Chevalier, C ;
Bourgeois, E ;
Just, D ;
Raymond, P .
PLANT JOURNAL, 1996, 9 (01) :1-11