Neural identification of dynamic systems on FPGA with improved PSO learning

被引:65
作者
Cavuslu, Mehmet Ali [2 ]
Karakuzu, Cihan [3 ]
Karakaya, Fuat [1 ]
机构
[1] Nigde Univ, Fac Engn, Dept Elect & Elect Engn, Nigde, Turkey
[2] Koc Information & Def Technol Inc, METU Technopolis, ODTU Teknokent, TR-06800 Ankara, Turkey
[3] Bilecik Seyh Edebali Univ, Fac Engn, Dept Comp Engn, TR-11210 Bilecik, Turkey
关键词
Artificial neural networks (ANN); Particle swarm optimization (PSO); FPGA; System identification; PARTICLE SWARM; HARDWARE IMPLEMENTATION; NETWORKS; ARCHITECTURE;
D O I
10.1016/j.asoc.2012.03.022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work introduces hardware implementation of artificial neural networks (ANNs) with learning ability on field programmable gate array (FPGA) for dynamic system identification. The learning phase is accomplished by using the improved particle swarm optimization (PSO). The improved PSO is obtained by modifying the velocity update function. Adding an extra term to the velocity update function reduced the possibility of stucking in a local minimum. The results indicates that ANN, trained using improved PSO algorithm, converges faster and produces more accurate results with a little extra hardware utilization cost. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2707 / 2718
页数:12
相关论文
共 29 条
[1]  
[Anonymous], COMMUNICATIONSCONTRO, DOI DOI 10.1109/CESA.2006.4281844
[2]  
Az I., 2006, ISEECE 2006 3 INT S, P7
[3]  
Babuska R., FUZZY SYSTEMS MODELI
[4]   Application of a novel fuzzy classifier to fault detection and isolation of the DAMADICS benchmark problem [J].
Bocaniala, CD ;
da Costa, JS .
CONTROL ENGINEERING PRACTICE, 2006, 14 (06) :653-669
[5]   ALGORITHMS FOR RANDOMNESS IN THE BEHAVIORAL-SCIENCES - A TUTORIAL [J].
BRYSBAERT, M .
BEHAVIOR RESEARCH METHODS INSTRUMENTS & COMPUTERS, 1991, 23 (01) :45-60
[6]  
Cavuslu M.A., 2006, ISEECE 2006 3rd international symposium on electrical, electronic and computer engineering symposium proceedings. TRNC, P287
[7]   Neural network training based on FPGA with floating point number format and it's performance [J].
Cavuslu, Mehmet Ali ;
Karakuzu, Cihan ;
Sahin, Suhap ;
Yakut, Mehmet .
NEURAL COMPUTING & APPLICATIONS, 2011, 20 (02) :195-202
[8]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[9]  
ELLIOT DL, 1993, 938 TR U MAR I SYST
[10]   A high bit resolution FPGA implementation of a FNN with a new algorithm for the activation function [J].
Ferreira, Pedro ;
Ribeiro, Pedro ;
Antunes, Ana ;
Dias, Fernando Morgado .
NEUROCOMPUTING, 2007, 71 (1-3) :71-77