Non-hermitian exact local bosonic algorithm for dynamical quarks

被引:31
作者
Borrelli, A
deForcrand, P
Galli, A
机构
[1] ETH ZENTRUM, SCSC, CH-8092 ZURICH, SWITZERLAND
[2] MAX PLANCK INST PHYS & ASTROPHYS, D-80805 MUNICH, GERMANY
关键词
lattice QCD; Monte Carlo algorithms; dynamical fermions; fermionic Monte Carlo;
D O I
10.1016/0550-3213(96)00359-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present an exact version of the local bosonic algorithm for the simulation of dynamical quarks in lattice QCD. This version is based on a non-hermitian polynomial approximation of the inverse of the quark matrix. A Metropolis test corrects the systematic errors. Two variants of this test are presented. For both of them, a formal proof is given that this Monte Carlo algorithm converges to the right distribution. Simulation data are presented for different lattice parameters. The dynamics of the algorithm and its scaling in lattice volume and quark mass are investigated.
引用
收藏
页码:809 / 832
页数:24
相关论文
共 20 条
[1]   FULL QCD WITH THE LUSCHER LOCAL BOSONIC ACTION [J].
ALEXANDROU, C ;
BORRELLI, A ;
DEFORCRAND, P ;
GALLI, A ;
JEGERLEHNER, F .
NUCLEAR PHYSICS B, 1995, 456 (1-2) :296-312
[2]   Variants of Luscher's fermion algorithm [J].
Borici, A ;
deForcrand, P .
NUCLEAR PHYSICS B, 1996, :800-803
[3]   SYSTEMATIC-ERRORS OF LUSCHERS FERMION METHOD AND ITS EXTENSIONS [J].
BORICI, A ;
DEFORCRAND, P .
NUCLEAR PHYSICS B, 1995, 454 (03) :645-660
[4]   OVERRELAXED HEAT-BATH AND METROPOLIS ALGORITHMS FOR ACCELERATING PURE GAUGE MONTE-CARLO CALCULATIONS [J].
BROWN, FR ;
WOCH, TJ .
PHYSICAL REVIEW LETTERS, 1987, 58 (23) :2394-2396
[5]   A NEW SIMULATION ALGORITHM FOR LATTICE QCD WITH DYNAMICAL QUARKS [J].
BUNK, B ;
JANSEN, K ;
JEGERLEHNER, B ;
LUSCHER, M ;
SIMMA, H ;
SOMMER, R .
NUCLEAR PHYSICS B, 1995, :49-55
[6]   Progress on lattice QCD algorithms [J].
deForcrand, P .
NUCLEAR PHYSICS B, 1996, :228-235
[7]  
DEFORCRAND P, 1988, MOD PHYS LETT A, V3, P1367
[8]   ACCELERATING WILSON FERMION MATRIX INVERSIONS BY MEANS OF THE STABILIZED BICONJUGATE GRADIENT ALGORITHM [J].
FROMMER, A ;
HANNEMANN, V ;
NOCKEL, B ;
LIPPERT, T ;
SCHILLING, K .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C-PHYSICS AND COMPUTERS, 1994, 5 (06) :1073-1088
[9]  
GALLI A, IN PRESS NUCL PHYS B
[10]   REMARKS ON GLOBAL MONTE-CARLO ALGORITHMS [J].
GAUSTERER, H ;
SALMHOFER, M .
PHYSICAL REVIEW D, 1989, 40 (08) :2723-2726